ベストアンサー 2階と3階の微分を極限の式で表すと? 2020/07/15 08:20 1階微分の式: lim [ h → 0] { f(x+h) - f(x) } / h に倣って(ならって)お書き下さい。 みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー f272 ベストアンサー率46% (8653/18507) 2020/07/16 20:44 回答No.3 例えば2回微分なら f''(x) = lim [ h → 0] { f'(x+h) - f'(x) } / h のf'(x)に f'(x) = lim [ h → 0] { f(x+h) - f(x) } / h を代入すれば f''(x) = lim [ h → 0] { f(x+2h) - 2f(x+h) + f(x)} / h^2 になるよね。 質問者 お礼 2020/07/17 08:02 誠に有難う御座いました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) f272 ベストアンサー率46% (8653/18507) 2020/07/15 23:19 回答No.2 じゃあ,例えば 1回微分f'(x) = lim [ h → 0] { f(x+h) - f(x) } / h 2回微分f''(x) = lim [ h → 0] { f(x+2h) - 2f(x+h) + f(x)} / h^2 3回微分f'''(x) = lim [ h → 0] { f(x+3h) - 3f(x+2h) + 3f(x+h) - f(x) } / h^3 質問者 お礼 2020/07/16 08:01 毎度おおきに。 質問者 補足 2020/07/16 19:55 根拠も御示し下さい。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 1 f272 ベストアンサー率46% (8653/18507) 2020/07/15 16:05 回答No.1 1回微分f'(x) = lim [ h → 0] { f(x+h) - f(x) } / h 2回微分f''(x) = lim [ h → 0] { f'(x+h) - f'(x) } / h 3回微分f'''(x) = lim [ h → 0] { f''(x+h) - f''(x) } / h 質問者 お礼 2020/07/15 17:21 おおきに、ありがとうさんで御座います。 質問者 補足 2020/07/15 17:24 いえ、その様な、分かり切った表示ではなく、どちらも、無限小になってゆく数量である、h とか、k とか、・・・、及び、f と x とだけで表現して頂きたいのですが。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 微分・極限値 計算について質問です よろしくお願いします /は普通の分数 /は普通の分数の下にまた分子がくるという意味です 1. 次の関数f(x)を定義によって微分しなさい。 f(x)=1/x f´(x)=lim h →0 f(x+h)-f(x) =lim h →0 1/x+h-1/x /h =lim h →0 1/h{x-(x+h)/x(x+h)} =lim h →0 -1/x(x+h) =-1/xの二乗 このlim h →0 1/x+h-1/x /hのとき なぜlim h →0 1/x+hではなく、hもxと一緒になって分子に移動しているのかがわかりません。 その計算方法を教えてください よろしくおねがいします。 微分 可能 について 微分係数の定義は、 (1)f´(a)=lim[h→0](f(a+h)-f(a))/h これを変形すると、 lim[h→0](f(a+h)-f(a))=lim[h→0]h・f´(a) よって、lim[h→0]f(a+h)=f(a)となります。 x=a+hとすれば、 (2)lim[x→a]f(x)=f(a) となります。 lim[x→a]f(x)=f(a)はf(x)にaを代入している事と同じになると 思います。 ここで、問題です。 f(x)=|x|のx=0について微分可能で無い事を示す場合、 (1)式で解くと、 右極限 lim[h→+0](|0+h|-|0|)/h=lim[h→+0]|h|/h=1 左極限 lim[h→-0](|0+h|-|0|)/h h=-tと置くと、t→+0となる。 lim[t→+0](|0-t|-|0|)/-t=lim[t→+0]|t|/-t=-1 となり、lim[h→+0](|0+h|-|0|)/h≠lim[h→-0](|0+h|-|0|)/h なのでf(x)=|x|はx=0について微分可能でない。 (2)式で解くと、 右極限 lim[x→+0]|x|=0 左極限 lim[x→-0]|x|=0 x=-tと置くと、t→+0となる。 lim[t→+0]|-t|=0 よって、lim[x→+0]|x|=lim[x→-0]|x|となり微分可能であると成ってしまいます。 (1)式=(2)式なのに、解が異なってしまうのは何故でしょうか? 微分の極限値(注:初心者) 高校数学の本で微分の極限値の説明で、 lim(x→1) x^2 - 1/x-1=(x+1)(x-1)/x-1=lim(x→1) x+1=2 という式が書いてるのですが、これは結局 f(x)=x+1 という1次関数のlim(x→1)の場合のf(x)の極限値の事ですが、なぜ最初わざわざ分数で表して約分でx+1に変形してからxに1を代入するような説明なんでしょうか?最初の分数の状態でxに1を代入すれば分母も分子も0になり、そこで式が終わってしまうという事が言いたいだけなんでしょうか?なぜこういう説明があるのかが理解できません。微分係数のf'(x)=f(x+h)-f(x)/h の式でhにいきなり0を代入したらそこで式が終わってしまうという事を説明するためなのでしょうか?この文の必要性がいまいち分かりません。わかりにくい質問かもしれませんが引っかかるので、質問の真意がわかる人お願いします。ようするに、なぜ最初 x^2 - 1/x-1=(x+1)(x-1)/x-1 という分数で表してその後約分で x+1 の形に持ってくるような書き方なのかが知りたいんです。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 微分 可能 について その2 以前、http://okwave.jp/qa5093106.htmlにて質問させて頂きました。 以前の質問内容でなかなかご回答頂けなかったので再度質問させて頂きます。 f(x)=x/|x| x=0において微分可能かどうかという問題についてです。これは、連続の式lim[x→a]f(x)=f(a)より、 lim[x→0]x/|x|となるのですが、x/|x|というのはただ単純に約分することは出来ないのでしょうか? 約分できたとすると、lim[x→0]x/|x|=1となり連続になります。 グラフを書いてみたのですが、どうも連続ではなさそうなので、単純に約分できないと言う事でしょうか? lim[x→+0]x/|x|が不定という前提で続けます。 微分可能であるかどうかを示すために、lim[h→0](f(a+h)-f(a))/hを求めます。 右極限はlim[h→+0](0+h/|0+h|-0/|0|)/hとなり0/|0|不定形が出てきてしまいます・・・ 左極限も同じです。。。 どうやったら微分可能でないことを示せるのでしょうか? 解き方が分からずに悩んでいます・・・ 詳しい方ご回答よろしくお願い致します。 また、グラフを添付致しますが、f(x)=x/|x|のx=0におけるグラフは 表すことは出来ないのでしょうか?添付したグラフは正しいですか? 質問内容を整理します。 ・x/|xは単純に約分できないのか。 ・lim[h→+0](0+h/|0+h|-0/|0|)/hはどのようにとけば良いのか? ・x/|xのx=0における部分はグラフで表現できないのか? ・添付したグラフは正しいか? 以上、よろしくお願い致しますm(__)m 3階微分って何がわかるの?? 微分法の応用にて、関数f(x)の1階微分の正負では関数f(x)の増減が分かり、2階微分では関数f(x)の凹凸がわかるところまでは理解したのですが・・・3階微分すると何が分かるのか分からないので教えてください。 微分で混乱 数IIIの微分において混乱しています。 f(x)=|X|が微分可能かどうかについて 私は極限lim(X→0)|X|=0(左右とも)だから微分可能なのではないか、 と考えたのですが、他のサイトで質問したところ、 微分可能かどうかを判定する極限は、これではなく、 lim(h→0){(|X+h|-|X|)/h}です。この極限は、右極限が1,左極限が-1ゆえ値を持ちません。 よって、微分可能ではないわけです。 という回答を頂きました。 私はこの2つの式の違いが分からないのです。 頭弱いので分かりやすくどうか教えてください。 >< 全微分可能なら… 一変数関数f(x)について、全微分可能なとき、 f’(x)は連続と言えるのでしょうか? f(x)が全微分可能なとき、f(x+dx)-f(x)=f’(x)dxが成り立つから、 lim[h→0]f’(x+h)dx=lim[h→0]f(x+dx+h)-f(x+h)= =f(x+dx)-f(x) (←y=f(x)は微分可能なので連続だから) =f’(x)dx となって、f’(x)が連続ということになってしまうんですが、 そんなこと聞いたことがないので、たぶん、 僕の証明がおかしいのだと思うのですが、 僕の証明のどこが間違っているのでしょうか? 偏微分係数。 次の二変数関数fの(0,0)での各変数x,yに関する偏微分係数を求めよ。 f(x,y)= (2y+sinx/x+y if x+y≠0 (1 if x+y=0 解)xに関して lim(h→0) 1/h{f(0+h,0)-f(0,0)}= lim(h→0)sinh/h・1/h-1/h →+∞ よってfは(0,0)でxに関して偏微分ではない。 yに関して lim(h→0) 1/h{f(0,0+h)-f(0,0)}= lim(h→0) 2/h-1 →+∞ よってfは(0,0)でyに関して偏微分ではない。 これ合ってるでしょうか?間違っている気がするのですが…ご教授お願い致します。 微分の問題 微分の問題 (1) ※limはh→0とする。 lim{f(a+h)-f(a-3h)}/h (2) ※limはx→aとする。 lim{x^4・f(a)-a^4・f(x)}/(x-a) この2問が分からないので考え方を教えてください 「微分可能性を調べよ」という問題です f(x)=0 (x<=0) e^(-1/X) (X>0) の微分可能性を調べる問題なんですが、答えが「全ての点で微分可能」となってます。 lim(h→0) {f(h)-f(0)}/(h-0) =lim(h→0) e^(-1/h)/h =lim(h→0) 1/{e^(1/h)・h} とやってみたんですが。どうすればいいですか? 式の読み方を教えて下さい 皆さまこんにちわ 以下の式や記号の読み方が分からないので教えて下さい。範囲は微分の所(導関数)です。 (1) 「 lim(h→0) f(x+h)-f(x)/h 」 この式は何と読めばいいのでしょうか? たとえば、f(x+h)」は「エフカッコエックスプラスイチ」ですか? それとも「エフエックスプラスイチ」ですか? (2) 微分のところに出てくるもので 「 dy/dx 」 これは「ディーワイディーエックス」ですか? それとも「ディーエックスぶんのディーワイ」ですか? 申し訳ありませんが早めに知りたいので、分かる方は至急教えて下さい。m(_ _)m 微分可能と連続 f(x)がx=aにおいて微分可能なら、x=aにおいて連続であることを証明せよ。 という問題で基本的なものだとは思いますが、模範解答の答えが理解できないので、それを教えてください。 lim(h→0)*{f(a+h)-f(a)}=lim(h→0)*{f(a+h)-f(a)}/h*h=f'(a)*0=0 この式において、最初のイコールの前の式=f(a)になれば連続だということは分かります。 でもこの式自体変形が成り立つことのほかにはよく分かりません。どなたか、教えてください。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 高校数学、微分の定義式 微分の定義の1つ f‘(x)=lim(h→0)f(x+h)-f(x)/hのhは何を表しているのでしょうか?xは1やら2の代わり(任意の変数)ですが、hの意味がわかりません。 h⊂xと考えてよいのでしょうか? 微分係数を求める問題で f(x)=-2[二乗]-3x+1 について (x=0)の微分係数を求めよ。 という問題で 導関数の式に当てはめていくと f(0)’=lim h→0 -4a-2h+3 となりました。 この後どのように答えればよいのでしょうか? 教科書などを見ても分からずとても困っています>< どうかよろしくお願いします。 微分積分の問題。微分係数の問題です。 次の関数について()内の点における値と微分係数を求めよ。 (1)y=Sin^-1 x/2 (x=1) (2)y=(Tan^-1x)^2 (x=-1) 値は分かるんですけど微分係数の求め方が分かりません。 lim(h→0) {f(a+h)-f(a)}/h で求めるんでしょうか?でも求まらないような……。 途中式含め教えて下さい。お願いします。 極限値をあらわす f(x)が微分可能なとき次の極限値をf(a),f ’(a)であらわす問題で 1、lim f(a+2h)-f(a) / h h→∞ 2、lim x^2・f(a)-a^2・f(x) / x-a x→a の解き方を教えてください A 1、2f ’(a) 2、2a・f(a)-a^2・f ’(a) 極限 証明 極限 証明 lim[x→∞](1+(1/x))^x=eの証明はどのようにすれば良いでしょうか? [証明] (logx)'=1/x より,x=1における微分係数は1である。 したがって,微分係数の定義式から lim[h→0](log(1+h)-log1)/h=1 左辺を変形して lim[h→0](1/h)・(log(1+h))=lim[h→0]log(1+h)^(1/h)=1 また、 1/h=x すなわち h=1/x とおくと,x→±∞のときh→0であるから lim[x→∞](1+1/x)^x =lim[x→-∞](1+1/x)^x =lim[h→0](1+h)^1/h=e また、以下が理解できません・・・ lim[x→∞](1+1/x)^x=lim[x→-∞](1+1/x)^xはなぜ等しいのでしょうか? そして、lim[h→0](1+h)^1/h=eとしている理由がわかりません。なぜいきなりeが出てくる? logはどこにいったのでしょうか? 微分について教えてください (1)y=log(10)XのX=1における微分係数 (2)y=e^XのX=0における微分係数 を求める計算です。 それぞれf'(X)=lim<h→0> {f(X+h)-f(X)}/h を使って計算過程も示さなければならないのですが それぞれ代入してみても答えにうまくたどりつけません。 どのように解いていったらいいのでしょうか? どなたか解説よろしくお願いします。 微分がわかりません。 この頃微分を勉強しはじめた者です。 ある関数において、ある任意の座標x=aの点を取り、aを増加させた点をa+hと置く。 この時 f(a+h)-f(a)/hの式は平均変化率は表すことはわかりました。 _____ hの値を限りなく0に近づけていくと、aとa+hの幅がどんどん狭まって行き、ついには f(a+h)-f(a)/hの式は 微分係数を表す式になる。 (実際にはf'(a)とlimの表記がいりますが・・・) これもわかります。 ___ わからないのはここからです。 実際に微分の計算をする時 最終的にhに0を代入しますよね? このことが疑問なんです。 実際にhは0に限りなく近い数字なんですよね? なのになぜ0を代入するんですか? 二階の全微分について 物理でxyの座標を極座標に変換し加速度を計算するなかで、2階の全微分に困っています。あまり、微分積分は慣れていないので、丁寧に教えていただけると助かります。 http://okwave.jp/qa/q2707943.html でも、同じような質問があります。 一階の全微分はわかりますが、2階の全微分で項が増えるのがわかりません。 具体的には、 Z=f(X,Y), X=g(t) Y=h(t)で、 dZ/dt=(∂Z/∂x)dx/dt+(∂Z/∂y)dy/dt まではよくわかり、これを二階にするときはまず、第1項目(∂Z/∂x)dx/dtが {∂/∂x(∂Z/∂x)dx/dt}dx/dt+{∂/∂y(∂Z/∂x)dx/dt}dy/dt となるだと思うのですが、(∂Z/∂x)d/dt(dx/dt)という項も加わるようです。詳しくその考え方を教えていただけますでしょうか? 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
誠に有難う御座いました。