- 締切済み
難解とか 著名らしい
《あなをかし 法[と命名します]》; 下 紫枠の 穴 に 適するものを 挿入し http://userdisk.webry.biglobe.ne.jp/020/691/47/N000/000/006/150923830756382814177.gif 角 t を 求めて下さい;
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- jcpmutura
- ベストアンサー率84% (311/366)
直線BA y=xtan(80°) と直線AC y=(x-5)tan(130°) の交点A=(x,y)を求めると xtan(80°)=(x-5)tan(130°) x{tan(80°)-tan(130°)}=-5tan(130°) x{sin(80°)/cos(80°)-sin(130°)/cos(130°)}=-5sin(130°)/cos(130°) x{sin(80°)cos(130°)-sin(130°)cos(80°)}=-5sin(130°)cos(80°) x{-sin(80°)cos(50°)-sin(50°)cos(80°)}=-5sin(50°)cos(80°) x{sin(80°)cos(50°)+sin(50°)cos(80°)}=5sin(50°)cos(80°) xsin(130°)=5sin(50°)cos(80°) xsin(50°)=5sin(50°)cos(80°) x=5cos(80°) y=5tan(80°)cos(80°) y=5sin(80°) ∴ A=(5cos(80°),5sin(80°)) 直線BD y=x√3 と直線DC y=(x-5)tan(100°) の交点D=(x,y)を求めると x√3=(x-5)tan(100°) x{√3-tan(100°)}=-5tan(100°) x{√3-sin(100°)/cos(100°)}=-5sin(100°)/cos(100°) x{√3+sin(80°)/cos(80°)}=5sin(80°)/cos(80°) x{(√3/2)cos(80°)+(1/2)sin(80°)}=5sin(80°)/2 x{sin(60°)cos(80°)+cos(60°)sin(80°)}=5sin(80°)/2 xsin(140°)=5sin(80°)/2 xsin(40°)=5sin(80°)/2 xsin(40°)=5sin(40°)cos(40°) x=5cos(40°) y=5√3cos(40°) ∴ D=(5cos(40°),(5√3)cos(40°)) A,Dの内積は (A,D) =25cos(40°){cos(80°)+√3sin(80°)} =50cos(40°){(1/2)cos(80°)+(√3/2)sin(80°)} =50cos(40°){sin(30°)cos(80°)+cos(30°)sin(80°)} =50cos(40°)sin(110°) =50cos(40°)sin(70°) =25{sin(110°)+sin(30°)} =25{sin(70°)+1/2} |BD|の長さの2乗は |D|^2=25(1+3)cos(40°)^2 |D|^2=100cos(40°)^2 |D|=10cos(40°) |D|^2=50{1+cos(80°)} |DA|の長さの2乗は |A-D|^2 =(A-D,A-D) =|A|^2-2(A,D)+|D|^2 =25-25{2sin(70°)+1}+50{1+cos(80°)} =50{1+cos(80°)-sin(70°)} =50{1+sin(10°)-sin(70°)} =50{1+sin(10°)+sin(-70°)} =50{1-2sin(30°)cos(40°)} =50{1-cos(40°)} =100{sin(20°)}^2 |DA|の長さは |A-D|=10sin(20°) cos∠ADB =(DA,DB)/(|DB||DA|) =(A-D,B-D)/(|B-D||A-D|) =(A-D,-D)/(|D||A-D|) ={|D|^2-(A,D)}/(|D||A-D|) =|D|/|A-D|-(A,D)/(|D||A-D|) =cos(40°)/sin(20°)-25{sin(70°)+1/2}/(100cos(40°)sin(20°)) =cos(40°)/sin(20°)-{2sin(70°)+1}/(8cos(40°)sin(20°)) =[8{cos(40°)}^2-2sin(70°)-1]/(8cos(40°)sin(20°)) =[4{1+cos(80°)}-2sin(70°)-1]/(8cos(40°)sin(20°)) =[3+4cos(80°)-2sin(70°)]/(8cos(40°)sin(20°)) =[3+4sin(10°)-2cos(20°)]/[2{√3-2sin(20°)}] =[3+4sin(10°)-4{(1/2)cos(20°)-(√3/2)sin(20°)+(√3/2)sin(20°)}]/[2{√3-2sin(20°)}] =[3+4sin(10°)-4{sin(30°)cos(20°)-cos(30°)sin(20°)+(√3/2)sin(20°)}]/[2{√3-2sin(20°)}] =[3+4sin(10°)-4{sin(10°)+(√3/2)sin(20°)}]/[2{√3-2sin(20°)}] ={3-(2√3)sin(20°)}/[2{√3-2sin(20°)}] =√3{√3-2sin(20°)}/[2{√3-2sin(20°)}] =√3/2 ∴ ∠ADB=30°