条件付きの極値の問題
g(x,y)=x^2 -(1/4)y^2 -1 のもとでの関数f(x,y)= x^3 + y の極値を求めろ、という問題で
F(x,y,λ)= x^3 + y -λ(x^2 -(1/4)y^2 -1) とおき、それぞれ微分したFx,Fy,Fλを求めます。
そこから(x,y)(±2/ルート3,-+2/ルート3)の二点がf(x,y)の条件付きの極値の候補点として求まります。
(2/ルート3,-2/ルート3)の近くでg(x,y)=0の陰関数をy=ψ(x)とおき、p(x,ψ(x))とおく。
p(x,ψ(x))=0を繰り返し微分して、
するとψ'(2/ルート3)=-4 ψ''(2/ルート3)=6 ルート3
となるようなのですが、それがどうしてそうなるのかがわかりません。
どんな計算でψ'(2/ルート3)=-4 ψ''(2/ルート3)=6 ルート3 が求まるのでしょうか?