ベストアンサー 合成関数の問題(微分) 2014/02/17 09:51 問 次の関数を微分しなさい。 1)cos(3x+4) 2)sin2xcos3x 3)x^2cosx みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー info22_ ベストアンサー率67% (2650/3922) 2014/02/17 10:44 回答No.1 1) {cos(3x+4)}'=-sin(3x+4)*(3x+4)'=-3sin(3x+4) 2) {sin(2x)cos(3x)}'=(cos(2x)*2)cos(3x)+sin(2x)(-sin(3x))*3 =2cos(2x)cos(3x)-3sin(2x)sin(3x) (=2cos(5x)-sin(2x)sin(3x)) 3) {(x^2)cos(x)}'=2xcos(x)+(x^2)(-sin(x))=2x cos(x)-(x^2)sin(x) 質問者 お礼 2014/02/17 11:48 お早い回答ありがとうございます! 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 合成関数の微分法で質問です 合成関数の微分法で質問です (sinX)'=cosXという公式がありますよね そこで (sin2x)を微分すると 2sin2xになるのですが、 公式的に、 (sinx)'=cosxならば なぜ(sin2x)'=cos2x こうならないのでしょうか 三角関数の微分 三角関数の微分が解けません。 三角関数の法則を利用して答えは纏めた形になるのですが、上手く纏める方法が思いつきません。 1. y=sin^2xcos^3(2x) y'=2sinxcosx*cos^3(2x)+sin^2x*(-6)cos^2xsinx Ans:y'=sin2xcos^2(2x)*{1-8sin^2(x)} 2sinxcosxを2倍角の公式を利用したりして纏めましたが答えにたどり着けません。 また、 2. y=sinx/1+tan^2(x) y'=cosx{1+tan^2(x)}-sinx*2tanx{1/cos^2(x)} Ans:y'=cosx{1-3sin^2(x)} 纏め方について助言お願いします。 合成関数の偏微分 z=f(x,y)で x=rcosθ y=rsinθ としたとき ∂z/∂r = cosθ(∂z/∂x) + sinθ(∂z/∂y) ∂z/∂θ = r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} となりますよね。 次にこれらを ∂z/∂r = P ∂z/∂θ = Q とおいて 2階偏導関数 ∂P/∂r = (∂P/∂x)(∂x/∂r) + (∂P/∂y)(∂y/∂r) ∂Q/∂θ = (∂Q/∂x)(∂x/∂θ) + (∂Q/∂y)(∂y/∂θ) を求めたいのですが ∂P/∂x や ∂Q/∂x を求めるときに cosθ(∂z/∂x) についている cosθ や r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} についている r は 定数として扱うべきなのでしょうか?それとも変数とみて積の微分法を 用いればよいのでしょうか? 考えてみれば cosθ = x/r で (x,r)の関数ですから cosθは xで偏微分できそうですし r=x/cosθ で (x,θ)の関数ですから rも偏微分できそうです。 しかし解答をみる限りでは偏微分していません。 誰か教えていただけるとありがたいです。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 微分の問題 微分の計算問題です。次の関数を微分してください。模範解答をお願いします。 (1) (-4x^2+7x+1)/(x^2+x+1) (2) sin9xcos2x (3) sinx/(1-cosx) (4) xe^x/(e^x+3) (5) log{x+√(x^2+5)} (6) arctan(4+5x)/(5-4x) (7) arctan{(7x-9)/(2x+1)} (8) arccos√(1-x^2) 1問でもいいので解いていただけると助かります。 できるだけ計算過程も書いてください。 よろしくお願いいたします。 三角関数の微分の問題 三角関数の微分の問題で、下の問題がわかりません。 次の関数を微分せよ。 y={cos2x}^3 答えは、 y’=-3cos(2x)・sin(4x) となっているのですが、僕がやるとなぜか y’=-6{cos(2x)}^2・sin(2x) となってしまいます。 途中式も書きますので、どこが間違っているのかも教えてください。 y={cos(2x)}^3 y’=3{cos(2x)}^2・{cos(2x)}’ =3{cos(2x)}^2・{-sin(2x)・2} =-6{cos(2x)}^2・sin(2x) 返答お願いします。 合成関数の偏微分について z=f(x,y)で x=rcosθ y=rsinθ と置いたとき ∂z/∂r = cosθ(∂z/∂x) + sinθ(∂z/∂y) ∂z/∂θ = r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} となりますよね。 次にこれらを ∂z/∂r = P ∂z/∂θ = Q とおいて 2階偏導関数 ∂P/∂r = (∂P/∂x)(∂x/∂r) + (∂P/∂y)(∂y/∂r) ∂Q/∂θ = (∂Q/∂x)(∂x/∂θ) + (∂Q/∂y)(∂y/∂θ) を求めたいのですが ∂P/∂x や ∂Q/∂x を求めるときに cosθ(∂z/∂x) についている cosθ や r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} についている r は 定数として扱うべきなのでしょうか?それとも変数とみて積の微分法を 用いればよいのでしょうか? 考えてみれば cosθ = x/r で (x,r)の関数ですから cosθは xで偏微分できそうですし r=x/cosθ で (x,θ)の関数ですから rも偏微分できそうです。 しかし解答をみる限りではいずれも定数として扱われているようです 何故だかさっぱりわかりません。 どなたか知恵を貸していただけるとありがたいです。 微分 三角関数 y=cosx/sinxを微分すると y'={(cosx)'sinx-cosx(sinx)'}/(sinx^2) ={-sinxsinx-cosxcosx}/sin^2x ={-(sin^2x+cos^2x)}/sin^2x =-1/sin^2x で ={-(sin^2x+cos^2x)}/sin^2xからどうして =-1/sin^2xになるんですか? 教えてください 合成関数を2回偏微分するやり方?がわかりません;; y=r * sinθ x=r * cosθ とすると 合成関数の偏微分法から ∂f/∂r=cosθ*(∂f/∂x) + sinθ*(∂f/∂y) となります。 もう一回微分して ∂^2f/∂r^2= cos^2θ*(∂^2f/∂x^2) + sin^2θ* (∂^2f/∂y^2)+ 2sinθcosθ(∂^2f/∂x∂y) になります。 なんで 2回微分したときに cos^2θ とか sin^2θ とか出てくるんですか? よくわからないので くわしくおしえてほしいです;; 合成関数の問題について教えて下さい 問.関数f(x,y)をu=xcosα-ysinα,v=xsinα+ycosαと変数変換してu,vの関数g(u,v)とみなす。 (a)∂f/∂x=cosα(∂g/∂u)+sinα(∂g/∂v),∂f/∂y=-sinα(∂g/∂u)+cosα(∂g/∂v)を確かめよ。 (b)(∂f/∂x)^2+(∂f/∂y)^2=(∂g/∂u)^2+(∂g/∂v)^2を示せ (c)(∂^2)f/∂x^2+(∂^2)f/∂y^2=∂^2g/∂u^2+∂^2g/∂v^2 お願いしますm(_ _)m 微分の問題です。 微分の問題です。 (1)y=cos2乗x+cos2x (2)y=√(cos2x+sin3x) (3)y=eの-x次乗(cosax+sinax) (4)y=log(cosx) (5)y=log(sinx) なるべく詳しく説明してくれればうれしいです。 お願いします。 関数の 微分 問題が 解りません 次の 関数を 微分 せよ。 (1) y=eのcosX乗 (2)y=log(2x+3) この 2つの 関数の微分を 途中式 答え 教えて下さいm(_ _)m ロピタルの定理の問題が分かりません。 ロピタルの定理を用いて、次の不定形の極限値を求めよ。 lim(x->0)(sinx-tanx)/x^3 と言う問題なのですが、計算すると lim(x->0)((cosx)^3-1)/3x^2(cosx)^2= lim(x->0)-(sinx)^2(cosx)^2/(2x(cosx)^2)-(x^2)sin2x= lim(x->0)-sin2xcos2x/(cosx)^2-2xsin2x-(x^2)cos2x= lim(x->0)-2cos4x/-3sin2x-6xcos2x+2(x^2)sin2x= lim(x->0)2sin4x/3cos2x+4xsin2x+(x^2)cos2x=0 となってしまいます。 正解答は-1/2になるようなのですが、どなたかお教え下さい。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 合成関数の微分について y=sin^2 5x(sin2乗5x)の微分について y=(sin5x)^2と変形、u=sin5xとおき y'=(u^2)'(sin5x)' y'=(2u)(5cos5x) y'=10sin5x・cos5x までは計算できたのですが、解が5sin10xになっています。 y'=10sin5x・cos5xからどのような計算がされたのでしょうか。 よろしくお願いします。 微分 次の関数を微分しなさい。 1.y=2x√(x^2+1) 2.y=x/√(1-x^2) 3.y=√(1-x)/√(1+x) 4.y=x^2 sin(x+1) 5.y=sinx cos^2(x) 6.y=sin√(x^2-x+1) 7.y=sin^4(x) cos4x 8.y=√(1+cos^2(x)) 9.y=cosx/(1-sinx) 10.y=(tanx+(1/tanx)) 簡単な説明でも結構です。(○○の公式を使って・・みたいな) 非難や愚痴だけはごめんです。 三角関数の微分に関して質問させてください 三角関数の微分に関して質問させてください 三角関数を微分する時分からない部分があります。お力添えしていただければ幸いです。 sin(x)*sin(x)=sin^2x sin^2(x)をxで微分すると 2*cos(x)*sin(x)となるようなのですが過程を詳しく知りたいのです。また、 sin(x)cos(x)をxで微分した場合はどのようになるのでしょうか?よろしければお教えください。 よろしくお願いします。 微分の問題を教えてください。 微分の問題を教えてください。 次の微分の問題を教えてください。 (1) 1/sin^3(x)を微分せよ。 これは3倍角の公式を用いて、 sin^3(x)={3sin(x)-sin(3x)}/4と変形し、 与式に代入して商の微分をしたのですが、 答えが、{3cos(x)-3cos(3x)}/4sin^6(x)となってしまい、 正解とだいぶ違っていました。 どこが違うのでしょうか。計算ミスではないと思うのですが・・・。 (2) sin^n(x)cos(nx)を微分せよ。 nという文字を使われるとよくわかりません・・・。 ヒントでいいのでどなたか教えてください。 よろしくお願いします。 逆三角関数の微分 次の関数を微分せよ (1)y=(1/3)arctanx/3 (2)y=arcsin(cosx) という問題です。 (1)は arctanx=1/(x^2+1) を利用して y'= 1 1  ̄ *  ̄ ̄ ̄ ̄ ̄ ̄ * (x/3)' 3 (x/3)^2+1 = 1  ̄ ̄ ̄ ̄ ̄ (x)^2+9 となって、答えが出たのですか、 (2)を同じ要領で解くと y'= 1  ̄ ̄ ̄ ̄ ̄ ̄ ̄ * (-sinx) √(1-cos^2x) = -sinx  ̄ ̄ ̄ ̄ ̄ √(sin^2x) で止まってしまいました。 略解によると 1(-π/2<x<0),-1(0<x<π/2)となって整数値をとるのですが、自分の回答ではそうなりそうもありません。 どなたか教えてください。 合成関数の微分がらみの積分のについて 合成関数以外にもe出ない指数などに当てはまる事です。たとえば、 ∫(a^x)dx=1/loga*a^xとなります(積分定数は省略)し、∫(sin(nπ))dx=-1/n*cosのようになりますよね。これはcosを微分してみたり、指数を微分してみれば分かります。 合成関数がらみの積分は個人的なニュアンスですが「~分の1のような分数をかける」的なものがあります。 いちいち微分するのも面倒だし、ニュアンスでやっているのも10%ぐらい間違っているかもという不安があるので(不慣れが原因かもしれませんが)、どなたかこの考え方を「公式化」してください。 よろしくお願いします。 微分積分 問題 提出期限が迫っていて困っています。 いろいろと問題を解いてきたのですが、 残る微分積分が理解できずかなり苦戦中です。 わかる方教えてください。 宜しくお願いします。 I 次の関数を微分せよ(f')。 1) 3x**2 + 5x + 2 2) 1 / (3x) 3) (2x + 1) / (x**2 + 5x + 3) 4) (2x + 1)**(1/2) 5) 1 / (x**2 - 2x + 3)**(1/2) 6) 3 log x 7) x log (2x + 1) 8) e**(2x) 9) x**(1/3) 10) sin x + cos 2x 11) e**x cos x 12) log x / sin x 13) x log x - tan x 14) (x**3 + 3x**2 - 6x + 2)**3 15) (x**3 + 2x - 1)**(1/2) II 上問 1-2, 6-11の第2階導関数をもとめよ(f'')。 III 次の関数の不定積分(原始関数)を求めよ。 1) x**2 - 4x + 1 2) 1 / (x + 3)**2 3) x**(2/3) 4) (3x + 2)**(1/2) 5) 1 / (2x) (x > 0) 6) 1 / (x**2 - 1) (x > 1) 7) e**(2x) 8) x log x 9) sin x + cos 2x 10) x cos x 11) x**2 e**x IV 上問 1-5, 7-8, 11の区間 [ 1, 2 ] 上の定積分を求めよ。 (x**2はxの2乗を、x**(1/3)はxの1/3乗(3乗根)を表わす。) 三角関数の微分 y=sin2xを合成関数の微分法により y'=(sin2x)'*(2x)'=cos2x*2=2cos2x とあったのですが、y=sin2xが何で合成関数なんですか。 私の理解では、合成関数とは関数の中に関数が入ったようなものと おもっていたのですが。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
お早い回答ありがとうございます!