• ベストアンサー

コンデンサーの問題がわかりません

http://m.chiebukuro.yahoo.co.jp/detail/q10120259045 御手数ですが、こちらのサイトをご参照ください。

質問者が選んだベストアンサー

  • ベストアンサー
  • gohtraw
  • ベストアンサー率54% (1630/2965)
回答No.1

抵抗器の場合だと、 ・直列につないだ抵抗器の合成抵抗は各抵抗器の抵抗値を単純に足す ・並列につないだ抵抗器の合成抵抗は 1/R=(1/r1)+(1/r2) (Rは合成抵抗、r1とr2は各抵抗器の抵抗値) とすればいいのですが、コンデンサの場合は直列、並列との対応が 逆で、 ・並列につないだコンデンサの合成容量は各コンデンサの容量の和 ・直列につないだコンデンサの合成容量は 1/C=(1/c1)+(1/c2) (Cは合成容量、c1とc2は各コンデンサの容量) とすることで求めることができます。なぜそうなるかは例えば下記を ご覧下さい。 http://www.geisya.or.jp/~mwm48961/electro/condenser2.htm ちなみに、バネを直列または並列につないだときも似た形の式が 出てきますね。確か・・・。 (1) これはC2とC3を直列につないだものの合成容量を求めればいいのかな? であれば上記に従って(C23を合成容量とします) 1/C23=(1/C2)+(1/C3)       =(C2+C3)/C2C3 C23=C2C3/(C2+C3) (2) スイッチをA側に倒した時、C1に電荷が蓄えられますが、その大きさは Q1=E・C1 です。次にスイッチをB側に倒すと、E/C1の電荷がC1とC23に分配 されます。ここで大事なのは、スイッチをB側に倒しても電荷の総量は Q1のままで変わらないということです。C1とC23の合成容量は C1+C2C3/(C2+C3)=(C1C2+C2C3+C3C1)/(C2+C3) ですから、C1の両端にかかっている電圧は Q1(C2+C3)/(C1C2+C2C3+C3C1) ・・・(あ) です(コンデンサの基本式 Q=CVより)。少し話がそれますが、このとき C1の両端間の電圧と、C23の両端間の電圧は等しくなります。それぞれ 導線でつながっているので。 さて、C1にかかる電圧(あ)が判ったので、C1に蓄えられる電荷は C1*Q1(C2+C3)/(C1C2+C2C3+C3C1)   =E・C1^2・(C2+C3)/(C1C2+C2C3+C3C1) となります。 (3) コンデンサに蓄えられるエネルギーは CV^2/2 で与えられます。したがって、スイッチをA側に倒した時にC1に蓄えられる エネルギーは C1・E^2/2 ・・・(い) です。一方スイッチをB側に倒した時は 電圧:E・C1(C2+C3)/(C1C2+C2C3+C3C1) 容量:(C1C2+C2C3+C3C1)/(C2+C3) ですから、蓄えられたエネルギーは E^2・C1^2(C2+C3)/(C1C2+C2C3+C3C1)/2 ・・・(う) となり、(い)と(う)の差は (E^2/2)(C1-C1^2(C2+C3)/(C1C2+C2C3+C3C1))  =(E^2/2)(C1^2C2+C1C2C3+C3C1^2-C1^2C2-C3C1^2)/(C1C2+C2C3+C3C1))  =(E^2/2)(C1C2C3/(C1C2+C2C3+C3C1)) となります。

saitakaTS
質問者

お礼

とても丁寧でわかりやすいご回答ありがとうございましたm(__)m これをもとに勉強させていただきます!

関連するQ&A