ベストアンサー 固有値の応用 2013/07/25 21:29 添付の問題の解き方がわかりません。 問題としては行列の固有値を求めて解かなければなりません。 ちなみに固有値が1のときベクトルは[-1 1] 固有値が3のときにベクトルのひとつとして[1 1]があります。 これらを用いて座標変換を行い、変換先でのu,vにおける図形を求めたいです。 ご教授お願いします。 画像を拡大する みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー tmiyoshi ベストアンサー率60% (6/10) 2013/07/26 17:18 回答No.3 多分ですが、 2つの固有ベクトルから座標軸を45度回転してやればいいことが分かるので、 逆行列を求める時に下記のように変換する (x) (2 -1)(1/√2 1/√2 )(u) ( ) = 1/3( )( )( ) (y) (-1 2)(-1/√2 1/√2)(v) から x = (/3√2)(3u + v) y = (1/3√2)(-3u + v) x^2 + y~2 = 1に代入して 従って、 u^2 + (v/3)^2 =1 長軸3、短軸1の楕円になります。 質問者 お礼 2013/07/26 17:51 回転による座標変換でも解けるのですね. 勉強になりました. ありがとうございます. 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) tmiyoshi ベストアンサー率60% (6/10) 2013/07/26 15:11 回答No.2 固有値が1で固有ベクトルが(1,-1)の時、 u = x v = y となるので、これをx^2 + y^2 = 1 に代入して u^2 + v^2 = 1 (半径が1の円) また、 固有値が3で固有ベクトルが(1,1)の時、 u = 3x v = 3y となるので、これをx^2 + y^2 = 1 に代入して (u/3)^ + (v/3)^2 = 1 (長軸、短軸ともに3の楕円) では駄目なのでしょうか? 質問者 お礼 2013/07/26 16:02 解答ありがとうございます. 示された解法ではなく,座標変換によりどのような軌跡が得られるかを求めなければなりません. 実際固有ベクトルは無数にありますので,(1,-1)と(1,1)のときのみ満たすだけでは十分といえないと思います. 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 noname#199771 2013/07/26 07:59 回答No.1 画像の内容と質問文の本文の内容とが合ってないようにみえます。 (x y)^Tの左にあるのが行列なのか別の何かなのかもわかりづらいし。 「一体、本当の問題は何?」ということです。 たぶんそれで回答がついていないのでしょう。 画像に書かれた問題文には固有値とか図形を求めるとか書かれて いませんよね?固有値云々というのは出題者に別途要求されたの でしょうか?そして図形を求めるというのもそうなんですか?それと もあなたがそう考えた? 少なくとも、u,vが満たす方程式を求めることは要求されてないのでは? 小学校の教師とかによくいる、掛ける数と掛けられる数が逆だと×に するような人と同じニオイをその出題者に感じます。 たとえば、係数行列のrankが2だから計算しなくても楕円になること がわかります。それだけではいけませんか? 問題文が漠然としているので答えが漠然としていても文句いわれな さそう。 固有値をどうしても使いたければ使って射影分解したり、対角化して 挙動を調べたりしてもいいですし。もし対角化の仕方がわからないと かならそういう質問の仕方をしてください。 質問者 お礼 2013/07/26 16:02 ご指摘ありがとうございました. 質問者 補足 2013/07/26 14:12 問題はまず,(1)として行列[2 1,1 2]における固有値および固有ベクトルを求めよ,(2)として画像の問題があり,なおかつ(1)で得られた答えを解答に利用せよというものでした. こちらで問題を省略してしまいましたので,分かりづらくなり申し訳ありませんでした. 楕円型になるのは明らかに分かるのですが,計算過程においてうまく解答へもっていけません. ちなみに対角化のやりかたは存しております. 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 左固有ベクトルの幾何学的意味は,何でしょうか? 左固有ベクトルの幾何学的意味は,何でしょうか? できれば直観的な説明を教えていただければ,幸いです.また,以下の記述におかしなところがありましたらご指摘願います. 右固有ベクトルに関しては,分かり易いです.右固有ベクトルuは,行列Aに右側から掛けられますから,Aによる変換を「受ける」立場にあります.変換「する」のはA,変換「される」のはuです.その幾何学的意味は,変換されも方向は変わらず(要素間の値の比は変わらず),大きさだけが変化する(各要素が,等しくL倍になる.このLが固有値)ということです.2次元あるいは3次元座標を紙に書いて,図示による説明も分かり易いです. 一方,左固有ベクトルvは,行列Aの左側に位置しますから,変換を「受ける」のはAのほうです.変換「する」のはv,変換「される」のはAです.変換の結果,a次正方行列であるAは,1行a列行列になります.その幾何学的意味は,??? よろしくお願い致します. 固有ベクトルの作り方 固有値から固有ベクトルを作ったとき 1 -1 1 0 0 0 0 0 0 となりました。 x=(u,v,w) とすると u-v+w=0 です。 (1) w=-u+v とすると x=c1(1,0,-1)+c2(0,1,1) (2) u=v-w とすると x=c1(1,1,0)+c2(-1,0,1) ここから対角化の計算をしたりすると成分の違う行列になっても 問題は起きないんでしょうか?というか、違うベクトルになるこ と自体はどうなんでしょう?ご教授ください。 固有値・固有ベクトルの求め方 固有値・固有ベクトルの求め方 ある行列をA、単位行列をE、Aの固有値をλ、固有ベクトルをuとすると、 (λE-A)u=0 を立てて、(λE-A)が逆行列を持たないことから、λはわかりますよね?そこでλを(λE-A)u=0に代入してuを求めると教科書にあるんですが、0しか出てきません… どうしたら良いのでしょうか?他に方法があるのでしょうか? 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 固有値の求める順番? 3×3行列Aについて A= |0 1 1| |1 0 1| |1 1 0| を対角化せよという問題で まず Φa(t)= |-t 1 1| |1 -t 1| |1 1 -t| より固有値はλ=-1(重解),2 となります。 このあとなのですが、固有ベクトルを求めるときにどちらから先に求めればいいのでしょうか? 実は先にλ=-1の固有ベクトルを求めると A+E= |-1 1 1| |1 -1 1| |1 1 1| = |1 1 1| |0 0 0| |0 0 0| α,β(≠0)として x=αt[-1 1 0] + βt[-1 0 1](tは転置行列を表しています。) 同様にλ=2のときにはγ(≠0)として x=γt[1 1 1] 以上から固有空間は V(-1) = {αt[-1 1 0]}+{βt[-1 0 1]} V(2) = {γt[1 1 1]} dimV(-1) + dimV(2) = 3であるから対角化可能で 固有ベクトルを列にもつ行列をPとして P= |-1 -1 1| |1 0 1| |0 1 1| しかし答えには先に固有値λ=2の固有ベクトル先に求めて x = αt[1 1 1] x = βt[-1 1 0] + γt[-1 0 1] として対角化を P= |1 -1 -1| |1 1 0| |1 0 1| となっているのですが、自分の求めた方法では答えは間違っているのでしょうか? 固有空間から対角化するプロセスが間違っているのでしょうか? 正規行列の異なる固有値の固有ベクトルは直交する? Aを正規行列とすると適当な対角行列Λと適当なユニタリ行列Uが存在してU^*・A・U=Λである λとμを異なる固有値として Uの列ベクトルでありλの固有ベクトルであるベクトルが張るベクトル空間をPとし Uの列ベクトルでありμの固有ベクトルであるベクトルが張るベクトル空間をQとしたとき PとQは直交しλの固有ベクトルはPの元でありμの固有ベクトルはQの元であるから「λの固有ベクトルとμの固有ベクトルは直交する」 上の証明について質問します (1)結論は正しいですか? 正しければ (2)証明に穴はありますか? あれば (3)どのように証明したらいいでしょうか? 固有値と固有ベクトルの図形的意味 質問です。 例えば行列(2,2|2,5)(←(1行目|2行目)という意味です。)の固有値λはλ=1,6で、λ=1に対する固有ベクトルは(-2 1)、λ=6に対する固有ベクトルは(1 2)となりますよね。 このとき固有値と固有ベクトルの図形的意味はどういう意味なのでしょうか?大学で学んだのですがいまいち理解できませんでした。 固有値、固有ベクトル 次の行列の固有値と固有ベクトルを求めよ. (1 0 0) (1 1 0) (0 0 1) 固有値は求まりました。λ=1(3重解) 固有ベクトルが分かりません。というより、計算すると x=0になってしまいます・・・。 宜しければ、ご教授お願いします。 固有値と固有値ベクトルの求め方 A= 0-i i0 (ゼロと複素数iの行列) という2×2行列の複素数の行列の固有値と対応する長さ1の固有ベクトルを求めよ。という問題が出たのですが、固有ベクトルがわかりません。0になってしまいます。どのように出すか、どなたか教えてください。よろしくお願いします。 固有ベクトルの求め方について 数学の線形代数の問題で行き詰ってしまいました。 ご教授お願い致します。 3×3の行列 A= |3 2 4| |2 0 2| |4 2 3| の固有ベクトルを求める問題なのですが、 固有値は λ=-1,8 となました。 そこで、λ=-1に属する固有ベクトルを求めようとしているのですが、 その固有ベクトルが 2x + y + 2z =0 という式から得られるようです。 ここまでは理解できるのですが、 ここからどのようにして2つの固有ベクトル | 0 | | 1 | | 2 | | 0 | |-1 | |-1 | を求めているのか、分かりません。 分かりにくい表現で申し訳ありませんが、ご存知の方がおられましたら よろしくお願い致します。 固有値と固有ベクトルが既知のときの行列 3次の正方行列 A について次の条件が成り立つとする. | 1| | 0| |-1| は固有値 1 の固有ベクトルである. | 1| |-1| | 0| は固有値 -1 の固有ベクトルである. |2| |0| |1| は固有値 0 の固有ベクトルである. このとき以下の問に答えよ. (1) A を求めよ. (2) A を対角化する行列 P と対角行列 P^-1AP を求めよ. (2)は固有ベクトルをPとすれば,1次独立だからPが正則となり答えが分かるのですが,(1)をどのように出すか分かりません.ご教授お願いします. 行列の対角化 固有値を求める 次の行列の固有値、固有ベクトルの作る行列Pを求めて、対角行列に変換せよ。 A= 7 4 -16 -6 1 12 2 2 -5 と言う問題で、 固有値を求めるとき、|A-λE|より (7-λ) 4 -16 -6 (1-λ) 12 2 2 (-5-λ) となって =(7-λ)(1-λ)(-5-λ)+(-6)*2*(-16)+2*4*12-・・・・ としてから展開すると、計算も大変で、そのあとの 因数分解もわかりません;; どうすれば、もっと簡単に固有値を求められるでしょうか? お願いします。 固有値 この問題がまったく何を言っているのかわかりません。。固有値は|A-λE│=0の固有値方程式を解いて、固有値λを求めればいいんですよね?参考書などを見れば言葉で書いてあるだけで詳しい解きかたが書いていません。どうかできるだけ計算過程も詳しく教えてください。できれば(1)と(2)だけでも結構です。お願いします。 行列Aの固有値と対角化を以下の手順で考えていこう。 0 1 0 ( 1 0 0 ) 0 0 0 (1)行列Aの固有値を求めなさい。数量の検算には、固有値の和が行列Aのトレースに等しいことに注意せよ。 (2)固有値に属する固有ベクトルを求めなさい。 (3)行列Aの固有ベクトルを列ベクトルとして任意の順に並べて作った行列Pを示しなさい。 (4)行列Aはこの行列Pによって対角化可能であるかどうかどうか調べなさい。 (5)行列Pの転置行列tPを示し、行列Pとの積tPPを計算しなさい。 (6)行列Aが行列Pによって対角化可能であるならば、対角化されることを示しなさい。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 行列の問題(固有値)についてです こんにちは。行列の問題で分からないものがあります。 B= |000abb| |000bab| |000bba| |abb000| |bab000| |bba000| の固有値と固有ベクトルを求めよという問題です。(みえにくいですが、6×6行列です) 以下、自分が現時点で分かっていることを書きたいと思います。 この問題の導入としてまず A= |abb| |bab| |bba| の固有値と固有ベクトルを求めよ という問題がありました。こちらは定義にしたがい解くと 固有値a+2b 固有ベクトル(1,1,1)^t 固有値a-b(重解)、固有ベクトル(-1,0,1)^t,(0,-1,1)^tと出ました。 問題となる行列Bについて固有方程式としてT=λE-Bを考え、さらに U= |100| |010| |001| と置けば λE-B= |λU -A| |-A λU| という形になり、ここで |BA| |AB|=|B-A||A-B| となることを利用すれば |T|=|λE+A||λE-A|と整理されるので、|λEーA|と|λE+A|が0になる場合をそれぞれ考えれば、結局|T|=0の場合を考えていることになるので、前の問題と比較して 固有値±(a+2b),±(a-b)となりました。(これがあっているのかも自信ないです。) 固有値に関しては上手くできたつもりなのですが、固有ベクトルに関してはどのようにやればいいのかが分かりません。それぞれの固有値について6×6行列に入れて行列を計算していく方法しかないのでしょうか。 Bの行列に規則性があるので気がつけば簡単に求めらるのかもしれないのでしょうが、私は思いつきません。 最後まで読んでいただきありがとうございました。回答よろしくお願いいたします。 固有値・固有ベクトル:Excelでの求め方 固有値・固有ベクトル:Excelでの求め方 固有値と固有ベクトルをExcelで求めたいのですが,どうやったらいいのでしょうか?ちなみに,行列は実数です. vが行列Aの固有ベクトルのときA^(-1)は? 【問】 ベクトルvが行列Aの固有ベクトルであるときベクトルvは逆行列A^(-1)の固有ベクトルか? ** 上記の問題です。 実際に、2×2行列などでAv=λvのときA^(-1)v=λ^(-1)vとなるので、 正しいとは思うのですが、一般的なnxn行列で成り立つかどうかの証明が 分かりません。 お分かりの方、お助け頂けますと幸いです。 お願い致します。 固有値 この問題がまったく何を言っているのかわかりません。。固有値は|A-λE│=0の固有値方程式を解いて、固有値λを求めればいいんですよね?参考書などを見ればちょっとした計算式と言葉で書いてあるだけで詳しい解きかたが書いていません。永年行列式をサラスの公式なり余因子展開なりで展開すると、λに対する三次方程式が得られ、それを解けば固有値がわかると教えていただいたんですがそれも何を言っているのかよくわからなくて。どうかできるだけ計算過程も詳しく教えてください。お願いします。 行列Aの固有値と対角化を以下の手順で考えていこう。 0 1 0 ( 1 0 0 ) 0 0 0 (1)行列Aの固有値を求めなさい。数量の検算には、固有値の和が行列Aのトレースに等しいことに注意せよ。 (2)固有値に属する固有ベクトルを求めなさい。 (3)行列Aの固有ベクトルを列ベクトルとして任意の順に並べて作った行列Pを示しなさい。 行列の対角化時、固有ベクトルとの関係は? 線形代数の講義で、、、 「A、B∈ベクトル空間V、線形変換をTとする。 対角行列A=T(B)=P-1 B P 」 というのは、先生の板書で なんとなくわかったのですが、 Tの固有ベクトルを、u1、u2、、、uN とすると、 何故 Pが(u1、u2、、、uN)という行列になるのか わかりません。 ご指導の程、お願いします。 行列の固有ベクトルの解法 現在行列の固有値と固有ベクトルをもとめるプログラムを作成しています。 手順としては、入力行列をハウスホルダー法により三重対角行列に変換し、その後QR法で対角化を行い固有値を求めます。 固有ベクトルはLU分解を使用して固有値ごとに求めていこうと考えました。 現状固有値を求めるプログラムは作成できました(そして正しく求められていることも確認しました)。そして行列のLU分解を行うプログラムまで作成できたのですが、LU分解後の行列から固有ベクトルを求める方法がわかりません。 詳しく説明します Ax = λx を (A - Iλ)x = 0 として、この(A - Iλ)をLU分解しました。 すると式は LUx = 0 となり 最終的に Ux = 0 をとく問題になります。 ここで行列Uは上三角行列なので、1次の連立方程式を解くように、行列Uの右下の要素を使って計算を始めていくのですが、自分がなにか勘違いをしているのだと思うのですがこの方法で計算すると固有ベクトルが全て0になってしまいます。 行列U x 0 | 2 3 4 5 | |x1| = |0| | 0 4 2 9 | |x2| = |0| | 0 0 7 5 | |x3| = |0| | 0 0 0 8 | |x4| = |0| このような図式になり、固有ベクトルであるxを求めていくのですが、x4から順にもとめても0にしかならないんです。 下記のサイトを参考に学んでいたんですが、この部分が分からずにいます。 http://hooktail.org/computer/index.php?KL%C5%B8%B3%AB2 どこを勘違いしているんでしょうか? アドバイスをお願いします。 行列における固有値、固有ベクトルについて 少しばかり固有値、固有値ベクトルについて、分からないことがあったため質問します。 添付画像に式を示します。 この式を解くとλ=1という固有値が出ます。しかし、λ=1を行列式に代入すると全てが0になり固有値ベクトルを求めることができません。 回答のページには、途中計算が省かれているため、過程がわかりません。こういった場合には、どう個体値ベクトルを求めれば良いのか、教えてもらえませんか? 固有値が複素数のときの固有ベクトルの求め方 固有値が複素数のときの固有ベクトルの求め方 ( -7 -5 ) ( 13 9 ) の2x2行列で固有値を求めると 1±2i になると思いますが Av = λv の形で固有ベクトルを求めようとすると ( -8 + 2i ) x - 5 y = 0 13 x + ( 8 + 2i ) y = 0 の形になり、その先を求めることが出来ません。 何度も計算したので最後の2つの式は間違いは無いと思うのですが、 固有値が複素数の時は、Av = λv の方法で計算することは出来ないということでしょうか? またどのように計算できるのでしょうか? お知恵をお貸しいただければ幸いです。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
回転による座標変換でも解けるのですね. 勉強になりました. ありがとうございます.