- ベストアンサー
微分方程式の問題です。
定期テスト前で、わからず困っています。 (1)dy/dx = -3y x=1,y=1 のとき (2)(x-1)dy/dx= 2(y-3) x=2,y=4のとき 上記2題宜しくお願い致します。
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
(1)指数関数の微分方程式:y=Ce^{-3x}. 1=Ce^{-3}よりC=e^3. ∴y=e^3e^{-3x}=e^{-3(x-1)}(答) (2)変数分離:dy/(y-3)=2dx/(x-1),∫dy/(y-3)=2∫dx/(x-1) ∴log|y-3|=2log|x-1|+C=log(e^C|x-1|^2),|y-3|=e^C(x-1)^2 y-3=±e^C(x-1)^2 y=3+A(x-1)^2 (A=±e^C) 4=3+A(2-1)^2よりA=1 ∴y=3+(x-1)^2=x^2-2x+4(答)
お礼
大変わかりやすかったです。ありがとうございました。