- 締切済み
ベッセル関数とcosの積分
\int_{0}^{∞} J0(nx) cos(mx) dx という式、ここでJ0(nx)は0次のベッセル関数です。 山口勝也さんという方の「詳細微分方程式・特殊関数演習」という本のp244に上記の解が2通りかかれています。 1つは 1 / √(n^2 - m^2) もう1つは 0 しかしながら、その本にはそれぞれの解になる「条件」が明記されているようではないのですが、どういう条件でそれぞれの解になるかご存知でしょうか?
- みんなの回答 (2)
- 専門家の回答
\int_{0}^{∞} J0(nx) cos(mx) dx という式、ここでJ0(nx)は0次のベッセル関数です。 山口勝也さんという方の「詳細微分方程式・特殊関数演習」という本のp244に上記の解が2通りかかれています。 1つは 1 / √(n^2 - m^2) もう1つは 0 しかしながら、その本にはそれぞれの解になる「条件」が明記されているようではないのですが、どういう条件でそれぞれの解になるかご存知でしょうか?
お礼
ありがとうございます。 n^2==m^2の場合、答えは何になるのでしょうか?