- 締切済み
お願いします!数学です!
真夜中にどうもこんばんわ 毎日勉強頑張ってますが高一の私には少しキツイ問題がいくつかありまして… 考えていたらこんな時間になってしまいましたっ ですので、回答解説お願いします…! Oを原点とするxy平面の第1象限にOP1=1を満たす点P1(x1,y1)をとる。このとき線分OP1とx軸とのなす角をθ(0<θ<π/2)とする。点(0,x1)を中心とする半径x1の円と、線分OP1との交点をP2(x2,y2)(x2>0)とする。 次に点(0,x2)を中心とする半径x2の円と、線分OP1との交点をP3(x3,y3)(x3>0)とする。 以下同様にして、点Pn(xn,yn)(xn>0)と定める。 (1)x2,xnをそれぞれθを用いて表せ。 (2)θ≠π/4のとき、lim[n→∞]Σ[k=1,n]xkを求めよ。 (3)(2)で得られた値をf(θ)とおくとき、lim[θ→π/4+0]f(θ)およびlim[θ→π/2-0]f(θ)を求め、f(θ)=1を満たすθが区間π/4<θ<π/2の中に少なくとも1つであることを示せ。
- みんなの回答 (2)
- 専門家の回答