- ベストアンサー
チェビシェフの不等式 証明について
申し訳ありませんが、チェビシェフの不等式の証明途中において、疑問があったので、部分的に質問します。 μ:確率変数Xの平均 k:任意正数 σ^2:確率変数Xの分散 とした場合のチェビシェフの不等式の証明で、 (x-μ)^2 >= k^2 * σ^2 としていたところがありました。なぜ”(x-μ)^2”は”k^2 * σ^2”以上といえるのか説明お願いします。。
- みんなの回答 (2)
- 専門家の回答
申し訳ありませんが、チェビシェフの不等式の証明途中において、疑問があったので、部分的に質問します。 μ:確率変数Xの平均 k:任意正数 σ^2:確率変数Xの分散 とした場合のチェビシェフの不等式の証明で、 (x-μ)^2 >= k^2 * σ^2 としていたところがありました。なぜ”(x-μ)^2”は”k^2 * σ^2”以上といえるのか説明お願いします。。