- 締切済み
{a+b+c}^3-{a^3+b^3+c^3}
{a+b+c}^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} (ただし、n=1,2,3,4,5) を因数分解するにはどうしたらよいのでしょうか。
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- nag0720
- ベストアンサー率58% (1093/1860)
回答No.1
{a+b+c}^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} (ただし、n=1,2,3,4,5) を因数分解するにはどうしたらよいのでしょうか。
お礼
ありがとうございます。 {a+b+c}^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} はいつでも、X=(a+b)、Y=(b+c)、Z=(c+a)を新しい3変数として書き表すことができ、さらに、X、Y、Zの対称式にもなっているのですね。それはすごいと思いました。 別方面では、変数a、b、cの対称式だから、(a+b+c)、(ab+bc+ca)、abcを新しい3変数として書き表すこともできると思います。 {a+b+c}^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)}=0 をabc空間内の曲面だとか、整数解(a,b,c)の不定方程式と見なしたときに何かの役に立つかもしれないですね。 因数分解としては、nが何であっても、 (a+b)(b+c)(c+a)(もうひとつ) というパターンだけになっていそうだと予想できそうです。確信はないです。