712(1+X)^10=957
(1+X)^10=(957/712)
実数の範囲で解くなら
1+X=±(957/712)^(1/10)
X=-1±(957/712)^(1/10)
=0.030014158232738,-2.030014158232738
複素数の範囲で解くなら
(1+X)^10=(957/712)e^(i2nπ) (nは整数)
1+X={(957/712)^(1/10)}e^(nπ/5)
X=-1+{(957/712)^(1/10)}e^(nπ/5)
(n=0,±1,±2,±3,±4,5)
n=0→X=-1+(957/712)^(1/10)=0.030014158232738
n=5→X=-1-(957/712)^(1/10)=-2.030014158232738
n=±1→X=-1+(957/712)^(1/10)e^(±π/5)
=-1+{(957/712)^(1/10)}{cos(π/5)±i sin(π/5)}
=-0.16670104154291±i 0.60542713186165
n=±2→X=-1+(957/712)^(1/10)e^(±2π/5)
=-1+{(957/712)^(1/10)}{cos(2π/5)±i sin(2π/5)}
=-0.68170812065928±i 0.97960167706351
n=±3→X=-1+(957/712)^(1/10)e^(±3π/5)
=-1+{(957/712)^(1/10)}{cos(3π/5)±i sin(3π/5)}
=-1+{(957/712)^(1/10)}{-cos(2π/5)±i sin(2π/5)}
=-1.318291879340722±i 0.97960167706351
n=±4→X=-1+(957/712)^(1/10)e^(±4π/5)
=-1+{(957/712)^(1/10)}{cos(4π/5)±i sin(4π/5)}
=-1+{(957/712)^(1/10)}{-cos(π/5)±i sin(π/5)}
=-1.833298958457091±i 0.60542713186165