- 締切済み
二分子関与の酸化還元反応の拡散電流
以下の二つの酸化還元反応のうち、反応2の拡散で律せられたカソード電流がどのように表わされるかわかりません。 反応1:X + ne → Z 反応2:X + Y + ne → Z (X, Y: 反応物, Z: 生成物, e: 電子, n: 電子数) ●わかったこと 反応1における拡散で律せられたカソード電流密度は、フィックの第一法則から以下の式1のように表わせること分かりました。(春山志郎, "表面技術者のための電気化学", 2版, 丸善, 2005, 87-92より) 式1: j_1 = n * F * D_X * (C_X - C_X^*) / d j: 電流密度, F: ファラデー定数, D: 拡散係数, C: 界面近傍の濃度, C^*: 沖合いの濃度, d: 拡散層の厚さ (_○: 下付文字○,^□: 上付文字□) ◎わからないこと では、反応2の拡散で律せられたカソード電流密度はどのように表わされるのでしょうか? 以下の式2でいいでしょうか?D*C項はjの次元がおかしくならないように和だろう、簡単のために拡散層の厚さは同じと仮定しよう、と考えましたが… 式2: j_2 = n * F * [D_X * (C_X - C_X^*) + D_Y * (C_Y - C_Y^*)] / d ご存知の方がいらっしゃいましたら、お教え下さいますよう宜しくお願いいたします。また、文献等をご存知であれば、ご紹介下さいますよう重ねてお願い申し上げます。
- みんなの回答 (3)
- 専門家の回答
みんなの回答
- c80s3xxx
- ベストアンサー率49% (1634/3294)
> 反応2(PCET):X + H^+ + e → Y まず,この反応速度がどう表せるか. v=k[X][H+] なのか v=k[X] なのか. 十分な緩衝力を持っている溶液中では,表面での[H+]の消費は考慮しなくていいとなれば,後者かもしれない.であれば,結局,これは X のみが速度に効くので,二分子過程も減った暮れもなく,X だけが反応しているときと同じということ. 一方,H+ の消費が明らかにわかり,それが溶媒や緩衝剤の解離平衡では補えない場合はちょっとやっかい.溶媒の水や緩衝性成分からの供給がまったくないという非現実的な仮定を入れれば,これもバルクからの拡散で供給されることになる.この場合は,H+ と X の濃度関係,拡散係数の大小関係等々でいくつもの場合分けが必要で,一般化はできないと思う.
- c80s3xxx
- ベストアンサー率49% (1634/3294)
> 反応2(PCET):X + H^+ + e → Y この反応速度式はどう書けますか,という問題です.
- c80s3xxx
- ベストアンサー率49% (1634/3294)
> 反応2:X + Y + ne → Z これって,結局,電極では何が反応しているのか全然わからない. X が電極で還元されて X(-) になって,これがさらに Y と反応するのか.この場合は X だけが電極活性種なので,Y は電流にはまったく寄与しない. X が電極で還元されて X(-) になり,また Y も電極で還元されて Y(-) になり,X(-) と Y(-) が反応して Z になるのか.この場合は,X,Y 双方の電気化学特性と設定電位等によってさまざまな場合が考えられる. 結局,反応2だけでは一般的な議論の対象にぜんぜんならないという話.
補足
c80s3xxxさま ご指摘ありがとうございます。一般的な議論は難しいということですので、もっと限定したいと思います。 反応2は、化学反応過程(C)や電荷移動過程(E)から構成される、ECやCEといった反応を考えたかったわけではなく、1個か2個の電子の移動を伴う2分子還元反応について知りたかったのです。 具体的には、反応2を、1電子移動と1プロトン移動が同時に起こるプロトン共役電子移動(PCET)反応と考えるとどうなるでしょうか? Xやプロトン単独では還元を受けないし、Xはプロトン付加体を与えないとします。 反応2(PCET):X + H^+ + e → Y お時間があれば、ご回答下さいますようお願いいたします。
お礼
c80s3xxxさま ご回答ありがとうございました。 一般化の困難な点がわかりました。 注目している系に限定して、もっと詳細に検討したいと思います。 ありがとうございました。