• 締切済み

100年間の平均気温の上昇量の求め方

100年間の平均気温の上昇量の求め方がわかりません。 わかる方教えて下さい。

みんなの回答

回答No.1

 現在の炭酸ガス濃度は390ppmで、年に2ppmずつ増えています。100年後は濃度が倍増すると予想されています。  炭酸ガスによる吸収可能な15μmの赤外線の吸収の飽和を無視したコンピューター・シミュレーションにより、炭酸ガス濃度が倍増すると、気温は1.2度上昇するという予測が行われました。  次に、幅広い吸収波長域を持つ水蒸気による赤外線の吸収の飽和も無視されて、温度が上がると水蒸気の濃度が高まって、温室効果がさらに高まるはずだという正のフィードバックがあることを前提に、炭酸ガス倍増時の温度上昇は、1.5~4.5度とされたのです。中央値は3度で、極めて過大な値です。  炭酸ガス倍増時の温度上昇は別のいくつかの手法による計算ではいずれも0.4度です。また、人工衛星による温度と水蒸気・雲の関係の実測では、負のフィードバック効果があったことが分かっています。温度が上がると、水蒸気が増え、雲が多くなって日射をさえぎったり、反射したりして、地表温度を下げる方向に働きます。 http://blogs.yahoo.co.jp/nishiokablog/14779529.html  従って、正しくは炭酸ガス濃度倍増時の温度上昇は0.4度未満で、炭酸ガス濃度の上昇による温暖化の問題はもともと存在しないのです。  1896年にアレニウスは炭酸ガス濃度が2倍になると気温が5~6度上昇すると主張しました。1865年に炭酸ガスが温室効果ガスであることを発見したチンダルが、1900年頃に実験で炭酸ガス濃度を2倍にしても炭酸ガスによる吸収が増えないことを明らかにし、温暖化炭酸ガス原因説を既に論破しています。  温暖化炭酸ガス原因説では、炭酸ガスには温室効果があり、現状よりも濃度が高くなると、炭酸ガスによる地表からの放射の吸収が増えて、地球から宇宙に出て行く放射が減少するから、温度が上昇すると説明されています。  しかし、炭酸ガスに温室効果がある所までは合っていますが、その後の部分は間違っています。炭酸ガスは、地表からの地球放射のうち、吸収可能な波長15μmの赤外線をものすごく強く吸収します。わずか1mで9割以上、5mで98.4%、10mでは100%吸収します。 http://www.sundogpublishing.com/fig9-13.pdf 1mの空気柱の赤外線吸収率(Petty)  現在の炭酸ガス濃度は390ppmですから、わずか百分の1の3.9ppmしかなくても、波長15μmの地球放射は1000mの高さまでで全部吸収されてしまいます。ということは、温室効果の大きさはゼロと3.9ppmの間には明らかな差がありますが、3.9ppmと産業革命前の濃度280ppmとの間、280ppmと現在の390ppmの間、390ppmと2倍の780ppmの間に温室効果の差はありません。  実際に炭酸ガスが吸収できる15μmの波長では、地球放射と同じ大きさの大気放射が観測されていて、地表から上向きに出た地球放射はすべて炭酸ガスに吸収され、周囲の空気を暖めることなく、再放射されて大気放射として地表に戻っています。 http://www.asahi-net.or.jp/~rk7j-kndu/kenkyu/ke03.html 近藤純正先生のHPの図 3.5 http://www.aist.go.jp/ETL/jp/results/bulletin/pdf/62-6/nishimoto72.pdf 大気放射スペクトル測定例  15μmの波長では炭酸ガスに吸収されずに宇宙まで出て行っている地球放射は全くありませんから、炭酸ガスの濃度が高くなっても、炭酸ガスによる吸収は増えませんし、温室効果も増しません。炭酸ガスはすでに温室効果を100%発揮済みであり、これ以上の温室効果は発揮できません。 http://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Atmospheric_Transmission_JA.png 大気通過後の放射スペクトル分布 水蒸気と炭酸ガスの吸収波長の地球放射は全て吸収されてしまうため、宇宙まで出て行けない。地表からの地球放射のうち、宇宙まで出て行き、放射冷却を生じるのは、どの温室効果ガスにも吸収されない大気の窓領域の波長の部分のみ。  炭酸ガスよりもはるかに広い吸収波長域を持つ水蒸気も吸収可能な波長の赤外線を全て吸収し、同じ大きさの大気放射として地表に戻していますから、現在以上に水蒸気濃度が高くなっても温室効果は増大しません。平たく言うと、15μmの炭酸ガスの吸収波長と水蒸気の吸収波長域では、地表からの地球放射と大気から地表に向かう大気放射が同じ値であるため、放射冷却は全く生じません。大気の窓領域の放射をふさいだ場合(対流圏オゾンの増加)のみ、温室効果が増大します。  炭酸ガス濃度が増すと、15μmの吸収波長域が長波長側と短波長側に広がるから、温室効果が高まるとの主張(地球温暖化懐疑論批判、地球温暖化懐疑論へのコメントVer.3)がありますが、それは水蒸気が存在しない架空の世界での話で、実際の空気には炭酸ガスの50倍近い水蒸気が含まれていて、広がるはずの波長域と吸収波長が重なっています。従って、広がるはずの波長域は水蒸気によって既に吸収されてしまっていますから、炭酸ガス濃度が増しても温室効果は高まりません。 http://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Atmospheric_Transmission_JA.png 大気通過後の放射スペクトル分布  炭酸ガスに一度吸収された地球放射は半分が上向きに再放射され、炭酸ガス濃度が増すと、吸収と再放射を繰り返して宇宙へ出て行く距離が増すから温室効果が高まるとの主張がありますが、地表では15μmについて上向き地球放射と同じ大きさの下向き大気放射が観測されています。 従って、炭酸ガスが吸収して上向きに再放射した分は吸収と再放射を繰り返し、結局、全部下向きになって地表に戻ったことになります。15μmの地球放射と大気放射の差引はゼロで、宇宙に出て行く放射はありませんから、上記の主張は誤りであることがわかります。  成層圏のような低温低圧の高空は未飽和だから、炭酸ガス濃度が増すと、温室効果が高まるという説がありますが、人工衛星からの観測では炭酸ガスが吸収可能な波長15μm(波数670/cm)について、気温-53度(220K)の成層圏下部からの放射をとらえています。 0.1気圧では、わずか1mの空気柱でみると吸収は未飽和でも、実際の成層圏下部の厚みははるかに大きく、数十m、数百mの空気柱で考えると、吸収は飽和していますから、炭酸ガス濃度が高くなっても、温室効果は高まりません。  また、地表からの15μmの地球放射は高さ10m未満で全て炭酸ガスに吸収されていて、成層圏下部まで届いている15μmの地球放射は存在しません。成層圏下部は炭酸ガスが赤外線を吸収する所ではなくて、-53度の空気に含まれる炭酸ガスが15μmの赤外線を放射する所です。  温暖化は1900年代後半の、8000年ぶりという極めて活発な太陽活動によるものです。過去400年で見ても1900年代後半の太陽活動は最も活発です。太陽活動の気温への影響のタイムラグ(時間的遅れ)は15年位であり、太陽活動の低下の影響は2015年頃から出てきます。 http://ja.wikipedia.org/wiki/%E5%A4%AA%E9%99%BD%E5%A4%89%E5%8B%95 太陽変動 ウィキペディア http://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Sunspot_Numbers.png 400年間の太陽黒点数の推移  20世紀の太陽活動の変化による光の強さの変化は0.2%ですが、0.3度前後の温度上昇をもたらします。過去100年の温度上昇は0.7度ですから、これだけでも半分近くを占めます。 http://www.nistep.go.jp/achiev/ftx/jpn/mat009j/pdf/mat009j.pdf 元気象研究所所長 柳原一夫氏の報告 http://stesun5.stelab.nagoya-u.ac.jp/study/sub8.htm  太陽風速度、宇宙線が気温に影響を与えるメカニズム  アルプスの氷河は太陽活動が活発な時期に後退し、極小期に前進することを繰り返しています。 http://akumanosasayaki.blog.shinobi.jp/Entry/37  http://www.envi.osakafu-u.ac.jp/atmenv/aono/CliHis.html 太陽活動が不活発だった極小期はいずれも寒冷な気候となり、京都のヤマザクラの開花が遅れていることからも、太陽活動と気温の密接な関係がうかがわれます。 http://www.mission-k.net/globalwarming/cosmicray/cosmicray.html  オマーンのモンスーン(降水量の指標)と太陽活動に非常に密接な相関  過去100年の上昇分という意味でのご質問だった場合、日本では17の中小都市の観測点の平均から算出していて、発表されている上昇分は1.1度ですが、近藤純正東北大名誉教授の厳密な補正値は0.7度です。