- 締切済み
数学でいう「証明」と論理学でいう「証明」は異なるものでしょうか?
数学で使われる「証明」という言葉と論理学で使われる「証明」という言葉は意味が異なるものであると思うのですが,間違いでしょうか? 公理系で挙げられる代表的な恒真式と推論規則に基づいて,別の恒真式を導くことが論理学でいう「証明」ですよね? そして論理学的な「証明」によって得られるものは恒真式(定理)だと思います.恒真式とは情報の価値としてはゼロ(自明)です. これに対して,数学で「証明」されるものは恒真式ではないですよね?数学における「証明」とは論理学における「演繹」に相当すると思うのですが,この考えも間違いでしょうか? ご教授お願いします.
- みんなの回答 (2)
- 専門家の回答
お礼
真意を汲んで下さりありがとうございます. >辞書によれば「証明」とは論理学においても数学においても >真と認める(ことにしようよ、という)命題(公理)から、ある命題が正しいことを論理的に導くこと。 論理学の「公理」は恒真式(A∨¬Aのような命題)で,これは真であることがAの内容によらず決定する命題であると思います.これに対して,数学の「公理」は非恒真式(Aのような命題)で,真偽は内容によって決まる命題(当然それは問われませんが.)であると思います.そういう意味で上記の記述は数学的な視点からの記述のように思います.上記の書き方に倣うとき,論理学的な「証明」とは「内容に依らず真である命題(恒真式)から内容に依らず真である命題(恒真式)を論理的に導くこと」ではないでしょうか. >数学的知識「体系」とは >「恒真式」の集まりに推論規則を適用して別の新しい「恒真式」をつくり出したもの。 こちらに関しましても上記に関連するように思います.つまり上記の「恒真式」は2つとも「非恒真式」になるのが正しいのではと思います.なぜなら恒真式から恒真式を導くとは例えば,A∨¬AからA∨¬A∨Bを導くことであり,得られたものはいわばあたりまえだと思うからです. 雑なお礼になってしまいまして申し訳ありません. 大変貴重なご意見感謝いたします.