ベストアンサー 任意の円弧の軌跡 2008/07/18 21:31 平面上において、2定点A、Bを両端とする任意の円弧の3等分点のうちA点に近い方の点の軌跡を求めよ。という問題です。考えすぎて頭が痛いです。分からないと寝れません/>_<\お願いします。 みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー take_5 ベストアンサー率30% (149/488) 2008/07/18 21:54 回答No.2 いろんな解法が考えられるが、素朴な解法で。。。。。笑 a>0とする。xy平面上で、A(a、0)、B(-a、0)となるような点をとり、題意の3等分点をP、もう一つの3等分点をQとする。 PQとABは平行、PQ=PAであるから、PQの中点をHとすると、Hはy軸上にあって、PHはy軸に垂直で、PH:PA=1:2. よって、P(x、y)とすると、2x=√{(x-a)^2+y^2}であるから、x≧0、4x^2=(x-a)^2+y^2。 よって、求める軌跡は、双曲線:(x+a/3)^2/(2a/3)^2-(y)^2/(2a/√3)^2=1、(x≧0)。但し、x軸上の点を除く。 質問者 お礼 2008/07/18 22:13 簡単に解いていて愕然としました。ありがとうございました。 よければ他の解き方の方針だけでも教えて頂けたら幸いです。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) tyty7122 ベストアンサー率31% (238/764) 2008/07/18 21:40 回答No.1 このサイトでは、まず質問者が自分の考えを示すルールとなっている。丸投げ禁止。 さ、貴方の考えを補足欄にどうぞ。 質問者 補足 2008/07/18 21:47 初めてなもので失礼いたしました。 自分は限られた値域において双曲線になると予想しました。 まず、円弧の中心角をθ、半径をr、A、B点を原点対象X軸上の点(a,0),(-a,0)としました。円の中心P(0,k)(勝手においた)の座標は常にY軸上にあることは自明なので、三角形AOPに着目して条件を出しました。これでkとrはaとθで表されました。 またベクトルで追っていって三等分点Q(勝手においた)の座標をθ、r、kを用いて表しました。 この時点で自分が何をやっているのかわからなくなってしまいました。 助けてください! 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 軌跡に関する問題 平面上において、2定点A、Bを両端とする任意の円弧の3等分点のうちA点に近い方の点の軌跡を求めよ。という問題です。自分は限られた値域において双曲線になると予想しました。円弧の中心角をθ、半径をr、A、B点を原点対象X軸上の点(a,0),(-a,0)としました。円の中心P(0,k)(勝手においた)の座標は常にY軸上にあることは自明なので、三角形AOPに着目して条件を出しました。これでkとrはaとθで表されました。 またベクトルで追っていって三等分点Q(勝手においた)の座標をθ、r、kを用いて表しました。 この時点で自分が何をやっているのかわからなくなってしまいました。 助けてください! 軌跡の問題の解き方教えてください 座標平面上に定点A(6,0)、B(3,3)と円C X²+Y²=9がある。 (1) 点Pが円C上を1周するとき、点A,B,Pを頂点とする三角形△ABPの重心Gの軌跡の方程式を求めてください。 (2) (1)の軌跡上を動く点の座標(X,Y)に対して (ⅰ) X²+Y² の最大値と最小値を求めてください。 (ⅱ) Y-1/X の最大値と最小値を求めてください。 解き方わかる方教えてください。 軌跡 高校数学での定点、動点の図形の軌跡の証明(中学復習)、なんですが、基本軌跡に照らすのはわかるのですが、証明の仕方が取っつきにくいです。 ①その条件を満たす任意の点は、図形F上にある。 ②図形F上の任意の点は、その条件を満たす。 どのように、勉強するのがベストですか? ちなみに参考書は「理解しやすい数学ⅠA」です 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 軌跡 2定点O(0,0),A(6,3)と円(x-3)^2+(y-3)^2=9上を動く点Pがある。3点O,A,Pが同一直線上にあるとき、Aと異なる点Pの座標を求めよ。 動点の座標を文字で表して、方程式を解けばいいのでしょうか? 参考書には座標軸を適当に選ぶと書いてありますが、よく意味がわかりません… 軌跡の問題が苦手なので、この問題を解くヒントと軌跡について教えてくれませんか? 軌跡の計算式を教えていただきたいのですが。 軌跡の計算式を教えていただきたいのですが。 添付図のように三角形の頂点をまるめたような形状があります。 この中で定数になっているのは ・底辺の長さB ・上の円弧のかかった2辺全体の長さA ・円弧の半径R です。 X、Yを変数としたときに 頂点Pまたは円弧の中心点が描く軌跡線を求める計算式を得たいのですが、 力足らずで、どうにもなりません。 どなたがお力をお貸しください。 よろしく、お願いします。 数学 軌跡の問題です。 数学 軌跡の問題です。 xy平面上に存在する円Cは、その方程式はx^2+y^2=1である。また、点A(3,3)、点B(5,1)があり、線分AB上の点Pは、AB間を動く(両端を含む)。点Pから円Cに引いた2本の接線の、接点同士を結んだ線分の中点Qの軌跡を求めよ。 という問題があります。奇跡の方程式は、なんとかぐちゃぐちゃになりながらも、 (x-(1/12))^2+(y-(1/12))^2=(√2/12)^2 という風になったのですが、(答がないのであっているかは不明。) 点Qが動く範囲が分かりません。 どうやって求めるか教えてください。 (とりあえず原点は不適であることはわかります。) 軌跡の説明お願いします。 軌跡で、 「平面上に長さ3aの線分ABがある。2点A,Bからの距離の比が2:1 となる点Pの軌跡を求めよ。ただしa>0とする。」という問題(Pの座標は(X,Y)としてます。)の途中で、 「AP²=4BP² (X+2a)²+Y²=4{(X-a)²+Y²} X²-4aX+Y²=0」 と変形する部分があると思うんですけどどうしてもそこが理解できません。 わかる方、教えて下さい。お願いします。 中学 軌跡の問題 よろしくお願いします。 中学2年の数学の幾何の問題です。 学校で渡されているテキストのため、答えのみで、解説がのっていません。 1を途中までといてみたのですがうまくいかず。。。1がとければ、2もとけると思うのですが。。。 問題 長さ5の線分ABと、直線AB上にない定点Pがある。QはAからBまで動く動点である。このとき 1、 PQを3:1に内分する点Rの軌跡の長さを求めよ。答え 15/4 2、 PQを3:1に外分する点Sの軌跡の長さを求めよ。答え 15/2 私は1はA(0,0),B(5,0),Q(t,0),P(a,b)として、内分点(x,y)を内分点の公式で求めて。。。 としたのですが、そのあとどうすればいいのかわかりませんでした。 中学生だとこんなやり方ではないのだとは思うのですが、ほかにやりかたがわからず。。。 考え方も含めて教えていただけるとありがたいです。 よろしくお願いします。 軌跡の問題です。 定点A(0,2)とX軸までの距離が等しい点Pの軌跡を求めよ。 と言う問題で 軌跡上の点P(X,Y)は AP=PHを満たせば答えがでるというのは分かるのですが ルート(X-0)^2+(Y-2)^2=絶対値Y となっているのですが、なぜPHは絶対値Yと表せるのでしょうか? 教えて下さい。 軌跡 [問題] 単位円周上に2点A,Bがある。ただし、動径OAとOBの表す角はそれぞれ π/3と5π/6とする。このとき、2点A,Bからの距離の比が2:3である点Pの軌跡を求めなさい。 ここで点Pを(x,y)とおきました。 この点PからA,Bの距離の比の関係式の求め方(つまり軌跡)がわかりません。 どなたか教えてください。 複素数(主題は軌跡) 複素平面上で、異なる3つの点A,B,C(それぞれαβγ)は3α^2+4β^2+γ^2-2βγー6αβ=0(★)を満たす時、三角形ABCの計上を述べよ。 (問題集の方針の部分) 変数は3つあり、やりずらいから、★の式に一番よく出てくるβを定点Oに一致するよう平行移動する。移動後の点をそれぞれα‘、β‘、γ‘とすると、 α‘=αーβ、β‘=0、γ‘=γーβ 移動前の点は★の式を満たすから、3(α‘+β)^2+4β^2+(γ‘+β)^2-2β(γ‘+β)-6(α‘+β)β=0⇔ 3(α‘)^2+(γ‘)^2=0(☆) 疑問なのですが、☆の式にはなぜβがでてこないのでしょうか? 試しに他の定点のβ‘=1となるようにしてみたのですが、やはり消えました。理由を教えてください。 軌跡 二点A(-5、0)B(3、0)から等距離にある点Pの軌跡を求めよ。 という問題なんですが、途中まで出来るんですけど 実際、よく理解ができてません><; 詳しく教えていただけたら嬉しいです^^ 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 直線上を動く2点の中点の軌跡 長さLの線分の両端が、それぞれx軸、y軸上を動くとき、その線分の中点Pの軌跡を求めよ。 答えは円x^2+y^2=L^2/4 という問題の応用編である y=mx上の点Aとx軸上の点Bが距離Lを保ちながら動く時、点Aと点Bの中点の軌跡を求めよ。 という問題が分かりません。 友達から出された問題なので、ちゃんとした答えがあるのかどうかもわかりませんが、みなさんの知恵をお貸しください。 よろしくお願い致します。 同一円弧上の座標を求めたいのですが… 同一直線上の座標(http://oshiete1.goo.ne.jp/kotaeru.php3?q=2432311)で質問したものですが、今度は同一円弧上の座標で悩んでおります。 どなたかお知恵をおかしください。 --- 質問内容 --- 数学的な事がまったく分からないので、質問の文章もおかしいかもしれませんが、よろしくお願いします。 できれば、わかりやすく簡単な公式があれば助かります。 平面において、同一円弧上にある2つのポイントA,Bの座標、円弧の半径(または直径)、ABの弧の長さが分かっている場合、同一円弧上に新たに設けたポイントPの座標を求めるにはどうすればよいですか? Pの位置はその都度変化し、そのときのAとPの弧の長さまたは、BとPの弧の長さのどちらか一方が分かるという条件です。 よろしくお願いします。 数学の問題お願いします 数学の問題お願いします 1 平面上の2定点A、Bからの距離の2乗の和が一定値k(k>1/2・AB^2)であるような点の軌跡を求めよ 2 上の問題の和が差に、kがk'(k'>0)に変わった問題 です! お願いします 軌跡と方程式 AB=4である2点A,Bに対して、AP^2+BP^2=26を満たす点Pの軌跡を求める問題です。 ヒントとして、座標が与えられていない点に関する軌跡を求める場合は、座標軸を適当に定めて考えるとなっています(>_<) これは、具体的にAとBの数値をおいて考えるのでしょうか? 回答よろしくお願いしますm(__)m Pの軌跡の方程式!? x-y座標平面で、点A(1,1)からの距離の2乗と点B(3,3)からの距離の2乗の和が12である点Pの軌跡の方程式を求めよ。 という問題なのですが、点Pを(x,y)と置いて計算したんですが中心点(2,2)をとり、半径2の円となったのですが、おかしいでしょうか? 数学の問題です。 数学の問題です。 平面上でA B Cは異なる3定点でPは動点とする。次の等式を満たす点Pの軌跡を求めよ。 (1) → → |AP+3BP|=r(r>0) (2) → → → |AP+BP+CP|=9 です。 どうやって考えるか?からわからないので教えてください。 わかりずらくてすみません。 軌跡と領域の問題教えてください。 軌跡と領域に関する数2の問題です。教えてください。 (1)2つの不等式 x^2+y^2≦4、x+√3y-2≧0を同時に満足する領域の面積を求めよ。 (2)平面上の2点A(2,1)、B(-4,-2)に対してAP:BP=1:2を満 たす点Pの軌跡を求めよ。 (3)2次関数y=x^2+(2k-10)x-4k+16(k≧0)のグラフについて次の問に答えよ。 1.頂点の座標をkを用いて表せ。 2.kが変化するとき、頂点の軌跡を求めよ。 問題集に解説がついていないので、解くために使った知識などもよければ詳しく教えてください…。お願いします。 数学(2)軌跡 aを任意の実数とするとき、2本の直線 ax + y = a ・・・(1) x - ay = -1 ・・・(2) の交点の描く図形を求めよ。 1、(1)(2)のそれぞれが常に通る定点を求める。 (1)は(x-1)a + y = 0より定点(1,0)を通る。 (2)は-ya + x + 1 = 0より定点(-1,0)を通る。 2、(1)⊥(2)であることを示す。 a=0のとき (1)は直線y=0を、(2)は直線x=-1を表し、直交している。 a≠0のとき (1)はy = -ax + a (2)はy = (1/a)x + 1/a より傾きの積(-a) * 1/a = -1だから直交している。 3、1・2より図形的に考えて交点は円周上にあると分かる。 よって交点は定点(1,0),(-1,0)を直径の両端とする円周上にある。 4、(1),(2)の直線には、それぞれaにどんな値を入れても表せないものが1本ずつあり、それらは直交しているので、上の円からこの交点を除く。 (1)は直線x=1を (2)は直線y=0を 表すことができない。しかもこれらは直交しているので、それらの交点(1,0)は交点でない。よって、求める図形は 円x^2 + y^2 = 1 (ただし、点(1,0)を除く。) ★★★以下質問★★★ 「(1)は直線x=1を(2)は直線y=0を表すことができない。」 とありますが、なぜ表すことができないのかが分かりません。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
簡単に解いていて愕然としました。ありがとうございました。 よければ他の解き方の方針だけでも教えて頂けたら幸いです。