- 締切済み
ベクトルの外積
ベクトルの内積の定義は,二つのベクトルの大きさとそのなす角の余弦の積として定義されます.この定義は,例えば,仕事を定義する場合,あるいは,ガウスの定理のような曲面とその法線に対するベクトルの積の例などを使って,容易にその定義の妥当性が検証できます. 一方,ベクトルの外積の場合は,二つのベクトルの大きさとそのなす角の正弦の積として,しかも,その方向は二つのベクトルに対して直角と定義されます.この定義は,電磁気学には,フレーミングの法則などがありますが,力学でこの法則の妥当性を検証するような事実は,何があるのでしょうか.
- みんなの回答 (8)
- 専門家の回答
みんなの回答
- my3027
- ベストアンサー率33% (495/1499)
私は分配律とか結合律とか難しい事はわかりませんが、外積に関していえば考えすぎじゃないんですか? 虚数の様に数学的概念が先に発達し、その後電気回路の計算に応用される場合もありますが、外積は単純にモーメントのベクトル計算の為に定義されたと聞いたことがあります。
- tono-todo
- ベストアンサー率16% (169/1028)
物理学を学んでいない人ならしょうがないが・・ 妥当性とは一体何? 定義が妥当かどうか言っても始まらない、そういう定義で物事を整理してみると、非常に多くの事項が簡単に整理できる。 だから、その定義でその性質を皆さんが利用しているに過ぎない。 内積と仕事の関係はそれを仕事と定義した、と言うことです。 力のモメントを別の定義で表してよりうまい説明が出来るなら、その定義が使われているでしょう。 負数の積が正数になることが妥当性の言葉で表現されていますが?? 負数はこの世の中に本当に存在するのでしょうか? 負数を定義するといろんなことがうまく説明でき、しかも矛盾しないから皆さん平気で使っているだけです。 負数の積が正数になることは、負数の定義・・正数にある数を加えると0になる・・そういう数を負数という・・と仰るように分配・結合の法則を用いて「証明」できるのであって妥当性という言葉は正確ではない。勿論負数の積が正数になるというのは定義ではありません。
- Meowth
- ベストアンサー率35% (130/362)
なぜ外積を定義するか→ 便利だから。 物理法則以前に、 右手系デカルト座標で、座標軸を出す ix×iy=iz iy×iz=ix iz×ix=iy 3つのベクトルa,b,cで囲まれる平行6面体の(符号付き)体積を求める a.b×c=b.c×a=c.a×b ベクトルa,bを含みx0を通る平面 (a×b).(x-x0)=0 など。 外積をつかうと簡単に表現できるが、つかわないと、ぐじゃぐじゃになる。 フレーミングの法則だろうと、モーメントだろうと、角速度、角運動量だろうと、外積なしにかけるがぐじゃぐじゃになるので 外積を定義して、簡単に書いているだけ。
- b_bb
- ベストアンサー率23% (4/17)
質問の意図を汲み取れてないかもしれませんが ベクトルの内積というものは数学の座標変換などの必要性からできたのか、あるいは仕事の計算など物理的な方面からの必要性からできたのかはわかりません。が、確かにおっしゃるように数学的にも物理的にも通用するように定められていますね。 ベクトルの外積はおそらく物理方面からの必要性に応じて定められたものです。外積を定義すると容易に説明できる現象として、おっしゃる通り電磁気学の分野があります。 (僕はこれを妥当性を検証するような事実という解釈は上の理由により間違ってると思います。物理的に必要だったからこそ生まれた定義だと思ってますので) さて、そういうことを踏まえてstrinasacchiさんの質問を読み変えますと”外積を用いる分野は電磁気学いがいにあるのか?”としてしまいます。 答えはあります。 流体力学の渦度というものは、∇というものと速度の外積(rotation 回転といいます。)をとります。 また、そもそもポテンシャルエネルギーを定義する場合、イメージ的な話なので厳密性はかくのですが、座標そのものが回転していた場合は原点からの位置が同じでもエネルギーが変わってしまうので、ポテンシャルエネルギーが定義できません。 こういう場合においても∇との外積を用いることがあります。
- htms42
- ベストアンサー率47% (1120/2361)
仕事は力と移動ベクトルの内積で表されています。 この表現の妥当性が問題になるとしたら「仕事」をそういう風に表していいのかというところです。内積の妥当性ではありません。 内積を使って表される物理量があるから内積の定義の妥当性が検証されたという文章には全く意味がありません。
- tono-todo
- ベストアンサー率16% (169/1028)
何を質問してます。 外積の妥当性・・何のこと? 外積の定義に対して、それが妥当かどうか、というのは意味がありません。 内積は、力と動いた距離方向の内積が仕事だということで妥当性あり、と言う論法も全く同じ無茶苦茶論議ですが、質問者の言う妥当性が何に応用・利用できるのか?と言う質問だ置き換えると、外積も内積に負けず劣らずたくさん利用されています。 仕事が内積なら、#1の事例は全くその通り、もう少し延長すると、ある軸のまわりの剛体の回転は、角速度ベクトルが外積で表されます。 物理の勉強には国語の勉強も不可欠です。 定義を検証するなどと言うと、実力を疑われますよ。
- Meowth
- ベストアンサー率35% (130/362)
この法則 じゃなくて 定義でしょ
- my3027
- ベストアンサー率33% (495/1499)
たとえばモーメントMは M=r×F 全てベクトル の外積で計算されます。 x-y平面内で発生したMの方向は、z軸方向となる例です。
補足
早速ご回答いただきありがとうございます. 質問の説明が十分でなくてすみません. 二つのベクトルAとBがあったとき,二つのベクトルのそれぞれの絶対値とAとBがなす角の正弦を外積の大きさとして,外積のベクトルの方向をなぜ二つのベクトルに直角に定義したか,そのような定義が妥当だと示すような力学的物理現象はあるかということを問題にしています. 内積の妥当性は,仕事を考えればすぐでてきます. しかし,外積はなぜその方向がA,Bに直角というように定義したのでしょうか.電磁気ではそのような現象(例えばフレーミングの法則)が手近にありますから理解できますが,力学の方では,この定義を指示する現象があるのでしょうか. 別の違った例でいいますと(-1)x(-1)=1という式も一見定義のように見えますが,これは,分配律と結合律-この二つはごく自然な前提ですが-からこの式から妥当性は示せます.