ヒルベルトの点・直線・平面の「定義の仕方」について
『高校数学+α:基礎と論理の物語』(著: 宮腰忠)という書籍がPDFファイルになったもの↓
第1章 数
http://www.h6.dion.ne.jp/~hsbook_a/ch_1.pdf
を読んでいるのですが、27~28ページに、
19世紀末期,ドイツの数学者ヒルベルト(DavidHilbert,1862~1943)は,著書『幾何学基礎論』において,点・直線・平面が関係するある公理系を提唱しました.彼は,点・直線・平面といった基本的対象,および,‘存在する’,‘の間に’,‘と合同’といった基本的関係を「基本概念」と考えて,それらに直接的な定義を与えず,基本概念は,その公理系の中で,それらが満たすべき条件によって間接的に定義されていると見なしました.つまり,点・直線・平面は,公理系に述べられている,それらの間の相互関係によって定義され,また‘存在する’,‘の間に’,‘と合同’などの基本的関係も定義されるというわけです.このようなことはペアノの公理系が自然数を定義するだけでなく,未定義な‘次の者’n′から‘1を加える’演算が自然に定義されたことに対比できるでしょう.
彼が友人の数学者と酒場でビールを飲みながら,“点・直線・平面という代わりに,テーブル・椅子・ビールジョッキと言うことができる”といったことは有名です:公理系の中で,点・直線・平面の用語を,例えば,T・C・Hと置き換えたとしましょう.まず,T・C・Hは公理系の中で,それぞれ,点・直線・平面が満たすべき基本的性質を当然ながら満たします.次に,T・C・Hに課せられた公理系の条件によって,理論は公理系のみから完全に演繹的に展開され,T・C・Hに課せられた一連の定理が得られます.それらの定理は点・直線・平面が満たすべき定理に一致します.したがって,T・C・Hは,それぞれ,点・直線・平面と同一視せざるを得ないことになります.このことを指して,点・直線・平面は間接的に定義されているというわけです.このような定義の方法はまさに究極の定義といえるでしょう.点・直線・平面などの基本概念は,直接的定義を必要としない「無定義用語」になりました.
という文章があるのですが、どういう事なのでしょうか?
「間接的に定義する」というのは、27ページ下部に載っているような公理群を考え、それを満たすようなものとして点・直線・平面を定義する訳ですよね?
でも点・直線・平面を、T・C・Hと置き換える必要性が良く分かりません。
「『点・直線・平面を間接的に定義する公理群』から導かれる定理」と「『T・C・Hを間接的に定義する公理群』から導かれる定理」が一致するという事ですか? 仮にそうだとしてもただの言い替えな気がしますし…。
22ページには「かなりレベルが高い内容なので,‘お話’と考えて‘フーン,そういうことか’程度の理解で十分でしょう.」とも書かれていますし、高校数学レベルでは理解するのは無茶ですかね?
回答宜しくお願いします。