• ベストアンサー

↓ すみません。 答え間違えました   改  二次関数  最大値

こういう問題があります。自分で何回といてもできないので解き方を詳しく教えてください。      ↓ X,Yが定数とする。3X^2+2Y^2=-2X を満たすとき、 X^2+Y^2 の最大値を求めよ。                【答え 4/9】   です。 ちなみに自分で解くと 5/18 や 1/2 になってしまいます。

質問者が選んだベストアンサー

  • ベストアンサー
  • info22
  • ベストアンサー率55% (2225/4034)
回答No.6

何かすっきりしませんので整理してみました。 他の方が言われるようにX,Yの実数条件をどのように使い、まとめるかですね。Yを消去してXだけの実数条件にYの実数条件をどう取り込むかがポイントですね。単に判別式≧0だけでは解けない問題ですね。 (X^2)+(Y^2)=r^2 (r>0)…(A)とおくとき 3X^2+2Y^2=-2X…(B) を満たす実数(X,Y)が存在する条件でr^2の最大値を求めればいいということです。 (A)から Y^2=(r^2)-X^2…(C) を(B)に代入すると所でYの実数条件Y^2≧0 をXの条件に付さないといけませんね。 つまり -r≦X≦r…(D) また(C)を(B)に代入する所で(B)式のYの実数条件Y^2≧0 もXの条件に付さないといけませんね。 つまり 2Y^2=-2X-3X^2=-3X{X+(2/3)}≧0 -2/3≦X≦0…(E) (D)と(E)のXの範囲で (C)を(B)に代入して出てくるXの方程式の実数条件を考えればいいことになります。 f(X)=X^2 +2 X +2r^2=0 (r>0) …(F) 判別式D/4=1-2r^2≧0 r>0から 0<r≦(√2)/2…(G) (D),(E),(G)の条件をまとめると (1)0<r≦2/3の場合 -r≦X≦0…(H) この範囲に(F)が実根Xを持つ条件はf(-r)f(0)≦0 f(0)=2r^2>0からf(-r)=(r^2)-2r+2r^2=3r{r-(2/3)}≦0(成立) (2) r>2/3の場合 -2/3≦X≦0 この範囲に(F)が実根Xを持つ条件はf(-2/3)f(0)≦0 f(0)=2r^2>0からf(-2/3)=(4/9)-(4/3)+2r^2=2{r-(2/3)}{r+(2/3)}≦0 r>2/3を満たすrは存在しない。 (1)の場合しかなく 0<r≦2/3となる。最大値はr^2=(2/3)^2=4/9 r=2/3で最大値はr^2=(2/3)^2=4/9 この時の(X,Y)は(F)と(C)から(-2/3,0)と求まります。 X^2 +2 X +(8/9)=0 (H)から(-2/3)≦X<0を満たすXは X=-1+√{1-(8/9)}=-1+(1/3)=-2/3 Y^2={(2/3)^2}-(-2/3)^2=0, Y=0 以上

Squirrels
質問者

お礼

ありがとうございますっ! 確かにこのようなことを授業を受けていた時にやった覚えがあります。 とても参考になりました。 図を使うともっとわかりやすくなるんですよね!

その他の回答 (6)

  • fukuda-h
  • ベストアンサー率47% (91/193)
回答No.7

これは難しいですね 条件式3X^2+2Y^2=-2X の意味がわかってないと1/2が答えになりますね。条件式からY^2=-2/3X^2-xをX^2+Y^2 に代入して2次関数-1/2(x+1)^2+1/2 とやったはずです。多分誰でもするでしょうね。2次関数だけを習った時には誰でもこの過ちをします。 この誤りは条件式3X^2+2Y^2=-2X に関する知識不足からきます。 この3X^2+2Y^2=-2Xのあらわす図形を「楕円」といい数学Cでならいます。そうするとxが任意の実数を取るのではなく制限されることを知ります。 だから条件式3X^2+2Y^2=-2Xを変形し2Y^2=-3X^2-2X≧0をつくり2次不等式-3X(3X+2) ≧ 0を解いて -2/3 ≦ X ≦ 0 この範囲で2次関数-1/2(x+1)^2+1/2の最大値を求めようとするのです  条件式にY^2がある時はY^2≧ 0でもうひとつ条件を出すことを「実数条件」といいます。また参考書などで調べておいてください。  

Squirrels
質問者

お礼

ありがとうございます。 「僕の間違い」その通りでございます 今思い出したのですが。。。確かに楕円の式ですね。 やったのを思い出しました。

  • oyamala
  • ベストアンサー率40% (8/20)
回答No.5

3X^2 + 2Y^2 = -2X を式変形すると Y^2 = -X(3X + 2) / 2 となります。 しかしY^2 は必ず0以上ですから、 -X(3X+2) / 2 は必ず0以上でないといけません。 したがって -X(3X+2) ≧ 0 これを解くと -2/3 ≦ X ≦ 0 ですからXはこの範囲しか取り得ないということになります。

  • banakona
  • ベストアンサー率45% (222/489)
回答No.4

ひとことだけ。 >3X^2+2Y^2=-2X を満たすとき、   ・・・(*) これにより「xの変域が限定されること」を忘れたのでしょう。 1/2というのはおそらくx=1のときのX^2+Y^2 の値でしょう。でも(*)によりxは1にはなり得ません。 xが限定される理由は、他の方々が答えているとおりです。

Squirrels
質問者

お礼

「どのようなミスを僕がしていたのか」の回答ありがとうございます。 この答えがどうして出てくるのかについても悩んでいたのです。 そのようなミスだったんですね!

  • kkkk2222
  • ベストアンサー率42% (187/437)
回答No.3

3X^2+2Y^2=-2X 3(X^2)+2X+2(Y^2)=0 3【(X^2)+(2/3)X】+2(Y^2)=0 3【(X+(1/3))^2】+2【(Y^2)】=1/3 9【(X+(1/3))^2】+6【(Y^2)】=1 【(X+(1/3))^2】/【1/(3^2)】+【(Y^2)】/【1/(√6)^2】=1 X+(1/3)=(1/3)cosA X=(1/3)cosA-(1/3) Y=(1/(√6))sinA (X^2)+(Y^2) =(1/9)(cosA)^2-(2/9)cosA+(1/9)+(1/6)-(1/6)(cosA)^2 =-(1/18)(cosA)^2-(2/9)cosA+(5/18) =-(1/18)【(cosA)^2+4cosA】+(5/18) =-(1/18)【((cosA+2)^2)-4】+(5/18) =-(1/18)【((cosA+2)^2)】+(4/18)+(5/18) cosA=-1のとき、即X=(-2/3),Y=0のとき MAX -(1/18)+(4/18)+(5/18)=8/18=4/9 なんか、X、Yを見ると図からも・・・

Squirrels
質問者

お礼

夜遅くに回答ありがとうございます。 解答を見てみても三角関数を使っている様子は・・・。 今後の参考にしてみたいと思います。 図を使うのは確かです!!   でも式の意味があまり分かっていないので、それを見てもわかりませんでした (-。-;)

  • may0430
  • ベストアンサー率54% (57/104)
回答No.2

グラフで考えてはだめなんでしょうか?     3X^2+2Y^2=-2X …(1) を式変形すると、楕円を表す式が出てきます。     X^2+Y^2=r^2 (r>0)…(2) とすると、これは円を表します。 (2)の左辺が式(1)を満たすときというのは、 これらの楕円と円で交点を持つ時、ということになります。 ということは、最大値、最小値は、これらが接する時。 最大値は、この問題の場合だと、楕円が円の中に入って接している時ですね。

Squirrels
質問者

お礼

夜遅くに回答ありがとうございます。 解答を見てみても楕円を使っている様子は・・・。 今後の参考にしてみたいと思います。

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

Y^2 を消すと X の 2次式になるのでこれを (X の範囲に注意して) 最大化.