(A) Bernoulli polynomial:
Bn(x) = nC0 B0(0)x^n+ nC1 B1(0)x^(n-1)+...+ nCn Bn(0) ( nCm = n!/(m! (n-m)!) )
ここに、母関数は
t exp[xt]/(exp[t]-1) = ΣBn(x) (t^n)/n! (Σfor n=0,1,....)
(B) Bernoulli number : Bn = |Bn(0)|
定理
(1) B0(0)=1, B1(0)=-1/2, B2(0)=1/6, ...
(2) B[2n+1](0) = 0 (n≧1)
(3) Bn(x+1)-Bn(x) = n x^(n-1)
(4) dBn(x)/dx = n B[n-1](x)
(5) 関数方程式
f(x+1)-f(x) = Σan x^n (Σfor n=0,1,...,k)
の解は
f(x) = Σ(an/(n+1)) B[n+1](x) + C (Σfor n=0,1,...,k)
(6) Σm^n = (B[n+1](k+1)-B[n+1](1))/(n+1) (Σfor m=0,1,...,k)
Pf: 母関数より自明。