ベストアンサー 楕円の一部の面積 2007/01/30 15:58 楕円(長辺α、短辺β)のβよりY軸 +方向に40°-方向に40°の場合の面積の求め方を教えてください。過去に同様の質問をされていた方の内容を拝見してやってみたのですが今一よくわからなかった為、教えて下さい。 みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー y_akkie ベストアンサー率31% (53/169) 2007/01/30 21:03 回答No.3 楕円上のx,yをそれぞれ媒介変数を用いて表す 以下のようになります。 x = αcosθ y = βsinθ これらから、楕円の面積を求める公式が導出できます。 すなわち、積分の計算をして求める事ができます。 ∫[θ1:θ2]ydx =∫[θ1:θ2]βsinθdx ここでdx=-αsinθdθであることから、 =∫[θ1:θ2]-αβ(sinθ)^2dx =∫[θ1:θ2]-αβ/2(1-cos2θ) 後は、θ1,θ2に問題文に当てはまる値を代入して、積分の計算 をするだけです。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) 180915 ベストアンサー率16% (3/18) 2007/01/30 20:55 回答No.2 その楕円がどういう図形かちゃんと言ってくれないとわかんないよ。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 Tacosan ベストアンサー率23% (3656/15482) 2007/01/30 18:10 回答No.1 ど~いう図形なのかよくわからないんですが, 座標変換して円にしちゃダメ? 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 楕円の焦点が求められなくて困っています。 天体シュミレータを作っているのですが、地球の位置(0,0)と楕円軌道を通る衛星のある任意の3点S1(x1,y1)とS2(x2,y2)とS3(x3,y3)から、楕円の焦点もしくは、楕円の長辺と短辺を求める式というものはあるのでしょうか? よろしくお願いします。 楕円の面積と関数 xy平面上にある楕円上の座標は、 (x,y)=( a・sinθ,b・cosθ ) で、関数と面積Sは x^2/a^2+y^2/b^2=1 S=πab となります。 次に、 (x,y)=( a・sinθ,b・cos(θ+α) ) a,b,α:定数 はx,y軸に対して斜めに配置された楕円になりますが、この楕円の面積はどのように求めるのでしょうか?また、関数にできるのでしょうか? お分かりになる方、お手数ですが、教えてください。 よろしくお願いします。 楕円に内接する長方形の問題で・・・ x^2/a^2 + y^2/b^2 = 1 の楕円に内接する長方形で、 面積が最大のものの辺の長さを求めよ。 という問題で、 (1)単位円に内接する長方形で面積が最大のものを求める。→正方形 (2)この楕円は単位円をx軸方向、y軸方向にそれぞれa倍、b倍に拡大したものだから この楕円に内接する面積が最大の長方形は(2)で求めた正方形を x軸方向、y軸方向にそれぞれa倍、b倍に拡大したものである・・・ という解き方は、解答として×でしょうか? 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 楕円の接線とx軸と楕円に囲まれる面積 以下の問題がわからないです。解き方のアウトライン(極端に言えば、式がなくても良いです)のみで良いのでどなたかご教授ください。 楕円x^2/a^2+y^2/b^2=1上の点(a/2,(√3)b/2)における接線とx軸および楕円で囲まれた部分の面積は? よろしくお願いします。 楕円の面積 半径rの円があります。これを真上から見ます。(円のある平面を垂直方向から見る) この時この平面を45°回転させると(平面内ではなくて)、この円は楕円になりますよね?(目線を垂直方向から45°ずらすといえばいいのでしょうか) x方向は変化しませんが、y方向はrよりも大きな値になると思います。 この時の楕円の面積っていくらなんでしょうか?最初の円と比べて 何倍になっているのでしょうか? 45°だけじゃなくてθだけ回転させた時の楕円の面積ってどう表わされるのでしょうか? できるだけ計算途中とかも詳しく教えてください。 よろしくお願いします。 それと別の質問なのですが、 例えばA単体元素(密度N(A))とB単体元素(密度N(B))からなる化合物ABがあるとします。 Aの組成比をxとするとBの組成比は(1-x)です。 この時、この物質の密度N(AB)を N(AB)=x・N(A)+(1-x)・N(B)のように 組成に応じて掛け算したものとします。 この時、この組成に応じて掛け算したこの形をなんというのでしょうか? 加重平均?でいいのでしょか?(質問の意味がわからなければ補足いたします) 数学III 楕円の共通部分の面積について お世話になります。 考え方を教えて頂けると助かります。 「2つの楕円x^2+(y^2)/3=1,(x^2)/3+y^2=1で囲まれる共通部分の面積を求めよ」 この問題では対称性を利用して、計算の省略を行っております(x軸対称、y軸対称、直線y=xに関する対称)。 確かにグラフを描くと、囲まれた領域が3つの対称性を満たしているようなのですが、・・・ ■この領域について、式でそれらの対称性を示すことは可能なのでしょうか。 ■それぞれ楕円がx軸対称、y軸対称なので、その囲まれた領域もx軸対称、y軸対称になるのでしょうか。 ■2つの楕円は原点を中心とした90°回転の位置関係にあるので、直線y=xに関する対称性が言えるのでしょうか。 この対称性の利用は、どうも苦手です。 宜しくお願い致します。 楕円体の表面積 楕円面(x/a)^2+(y/b)^2+(z/c)^2=1で囲まれる立体について体積,表面積を求めよ.という問題を解いています. 体積は極座標に変数変換して,容易に4πabc/3と求まります.表面積についてですが模範解答では, 「楕円体の主軸のうちでaを基準にすると,b,cは b=βa,c=γa (β,γは定数) と表せる.よって体積をVとすると V=4πβγa^3/3 となる.これをaについて微分すると表面積Sは S=4πβγa^2 β,γを上式に当てはめると S=4πa^4/bc 」 となっています.ここで分からないのは,体積を微分して表面積を出すところです.たしかに,球の場合(a=b=c)は厚みdaの薄皮を重ねていけば体積になります.しかし楕円体の場合,薄皮の厚みは一定ではないのでこの方法で正しいのでしょうか? また,楕円体の表面積について調べてみると一般には複雑な式で計算されるようです. さらに,解答最後の方の,Sにβ,γを当てはめるところで,β=b/a,γ=c/aなので S=4πbc になるのでは?と思います.しかしこれではSはaに影響されないことになるのでおかしいとは思うのですが. 質問が多くすみませんが,どなたか教えていただけませんか? 楕円のグラフについて 6x²-4xy+3y²=18から楕円をエクセルで描いたのですが、 傾いた軸の方向と切片はどうやって求めるのかがわかりません。 教えてもらえないでしょうか? 円と二次曲線と、楕円 次の方程式の表す図形を描け。 4x^2+9y^2-8x+54y+49=0 教えてください!この問題の回答は 4(x-1)^2+9(y+3)^2=36 よって、だ円4x^2+9y^2=36をx軸、y軸の方向にそれぞれ1、-3だけ移動したものである。。。 っと書かれていて、二つの図が書いてありました! 二つともx軸の方向に横に伸びた、だ円でした。 <教科書では> 中心が0でー3から3までがx軸の範囲で y軸は2と-2が4x^2+9y^2=36の図です。 つまり横が半径±3、縦が±2のだ円でした。 <4x^2+9y^2-8x+54y+49=0の図> これは式を整理すると、確かに 4(x-1)^2+9(y+3)^2=36 になるのですけど、 教科書に書かれてる図をみると、x軸の方向に長いだ円で、中心が(1、-3)で、 半径が横が±3で、縦が±2と 4x^2+9y^2=36の式と同じでした。 そして教科書の説明どおりに、1、-3だけ移動しただけの事にはなってるのですけど、 私がわからないのは、どうして半径が横は3で縦が2なのか不明です!! だって4(x-1)^2+9(y+3)^2=36の 式を見ても、これって半径は6の円じゃないのですか?? スゴクナゾです!! 回転体の表面積 x軸、y軸に平行な辺をもち、楕円に内接する長方形を、y軸のまわりに回転してつくった直円柱の表面積ですが、長方形の第一象限の頂点を(x,y)とすると、直円柱の表面積は 2つの底面の面積:2πx^2 側面積:2π*x*2y=4πxy より 2πx^2+4πxy であっているでしょうか? 積分による曲・直線の面積の求める問題 (1)曲線√x+√y=1 と 直線x+y=1 で囲まれた図形 (2)楕円2x^2+6y^2=3の内部 の面積を求めたいのです(積分で) (1)では、曲線の式がどのような形になるのかが想像できず、図に表せないでいるために、どのような図形の面積を求めればいいのかわかりません。 (2)では楕円の形、つまりx軸y軸の範囲が分からないでいます。 すみませんが、どなたか力を貸していただけませんか? 楕円の式 質問です。 線形代数の行列の問題なのですが 楕円の行列式がわかりません。 たとえばX2乗+Y2乗=1 という式を行列にすると 例えば?)下ののように |10| |01| と上の||でくくっている中は楕円どうなるんでしょうか? またそれとX軸方向を5倍するとすると行列を使った式はどうなるのでしょうか。 ヒントください。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 楕円体の表面積について すみません、自分の計算結果に自信が持てないので、確認したいのですが、 http://www.asahi-net.or.jp/~jb2y-bk/NaturalSci/math/daenmen.htm を参考にして、a=3、c=1の楕円体の表面積を求めたところ、42.7になったのですが、合っているか確かめられる方はいませんか? 楕円について質問です。 楕円について質問です。 x^2-xy+2y^2=8の表す図形は添付画像のようになりますか。またこのように,軸が斜めになっている楕円は「代数・幾何」では取り扱われていましたか。 私は一つ前の課程で履修したため,軸が斜めになっている楕円は学びませんでした。 2つの楕円の交点の求め方が分かりません。 x軸方向に長径がa、y軸方向に短径がbの楕円を描きます。・・・・(1) この楕円を、x軸方向にcだけ(ただし、0<c<aとする。)、y軸方向にbだけ平行複写した楕円を描きます。・・・・(2) (1)と(2)の交点P1、P2を求めたいです。 それぞれの楕円は次の式で表されると思います。 x*x/a/a + y*y/b/b=1 ・・・・(1) (x-c)*(x-c)/a/a + (y-b)*(y-b)/b/b=1 ・・・・(2) 両式にa*a*b*bを掛け、差を取ると次のようになります。 b*c*(-2*x+c)+a*a*(-2*y+b)=0 これをxについて解くと x=a*a*(-2*y+b*(1+c^2))/2b/c・・・・(3) となります。 (3)を(1)に代入して整理すると 4*(a*a+c*c)*y*y -4*a*a*b*(1+c*c)*y +b*b*(a*a*(1+c*c)*(1+c*c)-4*c*c)=0・・・・(4) ---------- ================ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ となります。 (4)のうち、---部をA、===部をB、^^^部をC とすると、解の公式より y=(-B±√(B*B-4*A*C)/2/A で解けると思いました。 ためしにa=50, b=30, c=10として計算してみたところ、 √の中が マイナスとなってしまいます。 つまり、解なし、ということらしいです。 どうやったら交点が求まるのでしょうか。 教えてください。よろしくお願いします。 円と楕円について 円x^2+y^2=25をx軸をもとにしてy軸方向に3/5倍に縮小すると,どのような曲線になるか?? 円周上の点Q(s,t)が移された点をP(x,y)とするとx=s,y=3t/5 よってs=x,t=5y/3 s^2+t^2=25であるから x^2+(5y/3)^2=25 ゆえにx^2/25+y^2/9=1 すなわち,楕円x^2/25+y^2/9=1になる。 教えてほしいところ 例えx^2/a^2+y^2/b^2=1の形になってもa>b>0でないと楕円にはなりませんよね。 a>b>0である保障はどこにあるんですか?? 面積についてです。 数学の問題です。 わかるかたがおられたらよろしくお願いします。 数学の問題の質問です。 問題 y=e^xとx軸、y軸、x=1で囲まれる集合Aの「面積」を求めたい。 (1)Aの「面積」はどういう手順で定められるのか、極限の考え方を使ってのべよ。 (2)Aの「面積」を具体的に求めるためには(1)の定義だけでは不十分である。では何が必要か? (3)Aの面積を求めよ。 です。もしよろしければお願いします。 回転する楕円の問題 (x^2/a^2)+(y^2/b^2)=1 (a, bは実数) で表される楕円を,原点Oを中心としてxy平面内で回転させる. 今,各辺がx 軸または y 軸に平行,かつ,この楕円に外接する長方形を考える.このとき, 長方形の面積Sの最大値と最小値を求めよ 問題です。 私の考えとしては、 まず (X) =(cosθ sinθ) (x) (Y) (-sinθ cosθ)(y) でx,yをX,Yで置き換え、回転する楕円の式に変える。 次に、式をXで微分して、dX/dYをだして、接線の方程式を求める。 最後に、x=0の接線とy=0の接線の積*4は長方形の面積Sでこれを微分するなり、 変形するなり、最大値と最小値を求める。 こういうふうにやってみましたが、式が複雑でかなりの時間をかかりました。 この問題の制限時間は10分なので、自分のやり方が間違っているか、もっと 簡単な方法があると思います。 ですので、どなた分かる方、ご教授お願いします。 楕円の式について 重心が原点でなく(a,b)で長軸とx軸、短軸とy軸が平行でない場合の楕円の式はどのようになりますか? 【エクセル】傾いた楕円の長軸の求め方【数学】 こんにちは。 エクセルで時間t と動いている1点のx座標,y座標の関係をまとめました。 横軸をx座標,縦軸をy座標としてグラフを作ると、 この1点が(ほぼ)楕円形で動いていることがわかりました。 この楕円はx軸方向(水平方向)に対して長軸が傾いています。 この長軸の傾きを求める方法がわかりません。 宜しくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など