原点を通る重回帰式の偏回帰係数
はじめまして。
目的変数に対し、3つの説明変数を持つ資料があり、原点を通る重回帰式をたてたいところです。Excelなど、計算機の機能によって答えはわかっているのですが、式を作る計算過程を説明する資料を作らなければならなくなりました。
Y = aX+ bW + cZ
Y: 目的変数
X:説明変数1
W:説明変数2
Z:説明変数3
a,b,c : 偏回帰係数
について、残差平方和 {Σ(Yi - ( aXi + bWi + cZi ))}^2を最小にするa,b,cを求めたいのです。残差平方和に対し、a,b,cで偏微分するといいのだ・・・などという理論は概ねわかりますが、私の数学力では、実際に計算過程を書き表すことができません。
説明変数が2つで、原点を通らない重回帰式の偏回帰係数の計算方法については、たとえば、以下のURLに書き表した例があります。
http://aoki2.si.gunma-u.ac.jp/lecture/Regression/mreg/mreg1.html
このような書き表しの例で、説明変数が3つで、原点を通る重回帰式の偏回帰係数の計算方法をご紹介、またはご提示いただけないでしょうか。
どうかよろしくお願いいたします。