確率公式の式変形が。P(∪[i=1..n]C(i))=Σ[i=1..n]P(C(i))-Σ[i,j=1..n, i<j]P(C(i)∩C(j))+
確率の公式の証明です。
P(∪[i=1..n]C(i))=Σ[i=1..n]P(C(i))-Σ[i,j=1..n, i<j]P(C(i)∩C(j))+P(∩[i=1..n]C(i))…(*)
帰納法でi=3の時
P(C(1)∪C(2)∪C(3))=P(C(1))+P(C(2))+P(C(3))-P(C(1)∩C(2))-P(C(1)∩C(3))-P(C(2)∩C(3))+P(C(1)∩C(2)∩C(3))は明らかに成立。
i=n-1(n>3)の時,(*)式成立と仮定すると
(見やすいようにD:=∪[i=1..n-1]C(i)と置くと)
P(D∪C(n))=P(D)+P(C(n))-P(D∩C(n))
=Σ[i=1..n-1]P(C(i))+Σ[i,j=1,2,…,n-1, i<j]P(C(i)∩C(j))+P(∩[i=1..n-1]C(i))+P(C(n))-P(∪[i=1..n-1]C(i)∩C(n))
=Σ[i=1..n]P(C(i))+Σ[i,j=1,2,…,n-1, i<j]P(C(i)∩C(j))+P(∩[i=1..n-1]C(i))-P(∪[i=1..n-1]C(i)∩C(n))
から(*)式に辿り着けません。
どう変形すればいいのでしょうか?
お礼
ありがとうございます。 アイキャスシーとは読まないのですか?
補足
すいません。 アイスキャスシーです。