微分方程式のシャルピーの解法について
シャルピーの解法に沿って2変数関数u=u(x,y)を含めた微分方程式F(x,y,u,p,q)=0 (p=∂u/∂x,q=∂u/∂y)の解を求める際に特性方程式{dx/(∂F/∂p)}={dy/(∂F/∂q)}=[du/{p(∂F/∂p)+q(∂F/∂q)}]=-[dp/{(∂F/∂x)+p(∂F/∂u)]=-[du/{(∂F/∂y)+q(∂F/∂u)}]というのがでてきますが、これを導く手順についていくつか分からない点があります。
手順1:pとqを共にx,y,uの関数で表し、p=∂u/∂x=p(x,y,u),q=∂u/∂y=q(x,y,u)とする。
※質問ですがuはxとyの関数なので、xやyで偏微分すると同じくxとyの関数になると思うのですが、ここではあえてそのxとyの式を変形してu=(x,y)を入れ込むということでしょうか?
手順2:2変数関数u=u(x,y)の全微分duはdu=(∂u/∂x)dx+(∂u/∂y)dy=pdx+qdyとなり、これを変形するとpdx+qdy-du=0となる。この式を(1)とおく。(1)はu=u(x,y)-u=C [Cは任意定数でuは独立変数]の解を持つので、積分可能と言える。
※質問ですが、"(1)が解u=u(x,y)-u=Cを持つ"というのは一体どうして分かるのでしょうか?
また、その後に"積分可能と言える"とありますが、"微分方程式が解をもてば、その微分方程式が積分可能である"とも言えるのでしょうか?
手順2の続きです。
(1)は積分可能条件を満たすので、ベクトルA=[p,q,-1]とおくと、A・(rotA)=0を満たす。これを計算すると、-p(∂q/∂u)+q(∂p/∂u)-{(∂q/∂x)-(∂p/∂y)}=0という関係式が導ける。この式を(2)と置く。
手順3:p,qを求めるためにもう1つ関係式G(x,y,u,p,q)=b(bは定数)を用意する。ここでFもGもx,y,uの関数であることが言える。次に(2)の式を解くために必要な(∂q/∂u),(∂p/∂u),(∂q/∂x),(∂p/∂y)を得るためFとGをx,y,uでそれぞれ偏微分する。
まずxで偏微分すると、Fは(∂F/∂x)+(∂F/∂p)*(∂p/∂x)+(∂F/∂q)*(∂q/∂x)=0,Gは(∂G/∂x)+(∂G/∂p)*(∂p/∂x)+(∂G/∂q)*(∂q/∂x)=0という式になる。
※ここで質問ですが、これらの式はどう解釈したらいいのでしょうか?
例えばF(x,y,u,p,q)=px-qy-u=0という式があった場合x,y,u,p,qを独立変数ととらえた場合(∂F/∂x)=pという式が出てくると思います。
しかし、(∂F/∂x)とは別に(∂F/∂p)*(∂p/∂x)+(∂F/∂q)*(∂q/∂x)という項があるのを見ると、一体この2つの項はどこから出てきたのかが疑問に思えます。xの関数であるpとqの合成関数の微分のようにも見えます。ただuもxとyの関数であるはずですので、なぜ(∂u/∂x)といった項が出てきていないのか分かりません。
手順3の続きです。
次にFとGをyで偏微分すると、Fは(∂F/∂y)+(∂F/∂p)*(∂p/∂y)+(∂F/∂q)*(∂q/∂y)=0,Gは(∂G/∂y)+(∂G/∂p)*(∂p/∂y)+(∂G/∂q)*(∂q/∂y)=0となる。
最後にFとGをuで偏微分すると(∂F/∂u)+(∂F/∂p)*(∂p/∂u)+(∂F/∂q)*(∂q/∂u)=0,Gは(∂G/∂u)+(∂G/∂p)*(∂p/∂u)+(∂G/∂q)*(∂q/∂u)=0
※ここでも同じ質問ですが、これらの式はどのように考えたらでてくるのか疑問です。
さらにこの手順に従って進めると上に挙げたFとGをx,y,uで偏微分した6つの式から(∂q/∂u),(∂p/∂u),(∂q/∂x),(∂p/∂y)の値が出てきてこれらを(2)の式に代入することで、最終的に{dx/(∂F/∂p)}={dy/(∂F/∂q)}=[du/{p(∂F/∂p)+q(∂F/∂q)}]=-[dp/{(∂F/∂x)+p(∂F/∂u)]=-[du/{(∂F/∂y)+q(∂F/∂u)}]という特性方程式が出て、この中の2つを用いてもう1つのpとqの関係式Gを求めるようです。このFとGからpとqの値が求まるので、これを用いて解を求めるようになっています。
長くなりましたが、私が間違っている箇所も含めて解説していただければと思います。
お礼
とくほんさん、ご回答ありがとうございます。 ご指摘のとおり、X-1.6です。(苦笑) 逆JISばかりしか触っておらず、「つい」なってしまいました。 以後気をつけます。(やる前に指摘を受けたので注意しやすくなりました 感謝) 要するに、G85でLAPサイクルを起動できるようにし、取りしろ、送り、シーケンスを決め、シーケンスの番号に倣い、やりたいサイクルのGコードを立ち上げて数値を入力し、G80でキャンセルする、と解釈していいのですね? 何度かノートに書き込んでいたらおぼろげに理解できました。(U W は仕上げ代ですね) ファナックとは原点の考え方が全く違うらしく、ちょっと苦労していますが大体の感じは掴めてきています。 ちなみに申し訳ないのですが、基準バイトでZ0.にて演算、工具補正を全て取った後、ファナックの場合はワークシフトで全長を縮め伸ばしするんですが、オークマSPにおいては「ワークシフト」の考え方は無いのでしょうか? *今日機械が入って実加工はまだなんですか、ご迷惑でなければお答え頂けませんか? とくほんさん、引き続きの回答ありがとうございます。 ファナックを例にとって説明していただき、理解が早くなってとても助かりました。 おそらく、ファナックとの最大の違いはLAPサイクルと複合固定サイクルの組み方と原点の考え方の違いで、数値制御でのプログラムは若干のG Mコードの違いくらいなのでなんとかなりそうです。 Mコードを重複出来たり(機能が違えは)するので横に長くプログラムするのがコツみたいですね。 助かりました。 また、質問をした時にご迷惑でなければよろしくお願いします。
補足
すみません、誤記がありました。 オークマSPではなく、オークマOSPです。 実加工はまだなんですか、ではなく、実加工はまだなんですが、です。 失礼しました。