締切済み 積分 2017/09/01 15:13 y/2 dy を積分してください。 解説よろしくお願いします。 みんなの回答 (1) 専門家の回答 みんなの回答 info222_ ベストアンサー率61% (1053/1707) 2017/09/01 17:56 回答No.1 ∫ (y/2) dy=(1/4)y^2 +C (Cは任意定数) 通報する ありがとう 1 広告を見て他の回答を表示する(0) カテゴリ 学問・教育数学・算数 関連するQ&A 積分 次の積分の問題にどう手を付けたら,いいのかすらわかりません…。 どなたか解説お願いします。 t=√(y^2-x^2)と置き ∫(y/(1+y^2))(dy/(y^2-x^2)^(1/2)) 積分範囲(x~∞) を解け という問題なのですが。 積分の問題 ∫ y・e^(-y^2) dy=(-1/2)e^(-y^2)+C (Cは積分定数) の計算がわかりません。 ネットや参考書で調べてみたのですがよくわかりませんでした。 解説の方、よろしくお願いします。 積分の順序変更問題について ∫dy∫(sinX / X)dX 上の0から1までyで積分、yから1まで XでsinX / Xの積分の積分順序を変更して解く問題がわかりません。 なるべく詳しい解説つきで解答お願いできないでしょうか。 線積分 xy面上のスカラー場f(x,y)=xyに対し、線積分∫[C]drfを求めよ。 ただし、積分経路Cは(0,0)→(1,1)を結ぶ経路である。 C:x = t, y = t (t=0~1) dx/dt = 1 dy/dt = 1 ∴ ds = {√((dx/dt)^2 + (dy/dt)^2)}・dt = √(2)dt ここからどうすればよいのですか? 詳しい解説お願いします。 積分計算がわかりません 微分方程式の問題で (x+y)dy/dx=3x+3y+1 の一般解を求めたいのですが 自分がわかった部分は Y=x+y・・・(1)とおいて 両辺をxで微分して dY/dx=1+dy/dx・・・(2) となるので(1)(2)から dY/dx=(4Y+1)/Yになって Y/(4Y+1)dY=dx で両辺を積分すれば求まると思ったのですが 左辺の積分がうまく出来ません また、ここまでの式変形がすでに間違えているのでしょうか 積分の問題が分かりません よろしくお願いいたします。 問題文は、 円 x^2 + (y-1)^2 = 4 で囲まれた図形をx軸のまわりに1回転してできる立体の体積を求めよ。 私は、x = √4 - (y - 1)^2 として、x軸を回転しているので、 2∫(0~3) (√4 - ( y - 1 )^2)^2)πdy = 18π としたのですが、答えは6√3π + 16π^2/3でした。 問題集の解説では、xで積分していましたが、yで積分して解くことは出来ないのでしょうか。 分かる方がいましたらご指導よろしくお願いいたします。 積分ができません・・・ この積分でずっと悩んでます・・・ ∫(y^2×√(r^2-y^2)dy 定積分で0→hです. 積分 ∫ sin(x)/sin(x/2) dx の積分ってどうやるんですか x/2=yとおいて ∫ sin(2y)/sin(y) 2dy からsin(2y)=2sin(y)cos(y)を使って 4∫ cos(y) dy では変ですよね? 累次積分の順序変更 累次積分の積分順序の変更 累次積分 ∫(1→2)dy∫(y-1→y+1)f(x、y)dx の積分順序を変えよ 1≦y≦2 y-1≦x≦y+1 だから。 xy平面にグラフを書く。 すると平行四辺形がかけました。 ↑の累次積分ではxの積分→yの積分の順序なので yの積分→xの積分に順序を変えます。 以上からグラフの形より積分を3つに分けて {∫(0→1)dx∫(1→x+1)f(x、y)dy}+{∫(1→2)dx∫(1→2)f(x、y)dy} +{∫(2→3)dx∫(x-1→2)f(x、y)dy} このようになりました。 わざわざ3つにわける必要はなかったでしょうか? そもそもやり方はあってるのでしょうか。。。 どなたか教えていただけないでしょうか! n次元の積分計算 n次元の積分の計算です。 どなたか解説をお願い致します。 x,y∈R^N,t>0とします 積分区間を-∞~t^(-1/2)xとしたとき ∫exp(ーy^2)dy はどのように計算できるのでしょうか? 手ほどきよろしくお願い致します。 微分積分について 微分積分初心者です。 dy/dx=5という微分方程式があって、これの両辺をxで積分すると ∫dy/dx・dx=∫5dx y=5x + C(Cは積分定数)というのはわかるのですが、 dxを右辺に持って行って、 dy=5dxとして両辺を積分する時は、左辺をyで積分、右辺をxで 積分ということになるのでしょうか? こういうことは可能なのでしょうか? また一階微分の時は右辺にdxを持っていくことができますが、 二階微分以上ではできないのはなぜでしょうか? よろしくお願い致します。 累次積分に関しての質問です。 回答者の皆様にはいつもお世話になります。 ∫∫(x+y)dxdy 積分範囲 x≧0, y≧0, 1/2≦x+y≦1 を累次積分するときですが、下図の様にグラフで考えると、 1/2-x≦y≦1-x, 0≦x≦1と考えてよろしいのでしょうか? それとも、点(0,0) (1,0) (0,1)の大きい三角形の積分から、 点(0,0) (1/2,0) (0,1/2)の積分を引く形、つまり {∫[0 1]dx∫[0 (1-x)](x+y)dy}-{∫[0 (1/2)]dx∫[0 (1/2-x)](x+y)dy}と表した方が良いのでしょうか? ご指導願います。 積分の問題 定積分 ∫(∫cos(x/y)dy)dx yの積分範囲 (2x/π)→1 xの積分範囲 0→π/2 この問題が分かりませんでした.よろしければ解き方を教えてください. 積分が解けません ∫[a→b] {√(y-a)(b-y)}/y dy = {(√b-√a)^2}π/2 となるらしいのですが、その過程がどうしても分かりません √の中身を展開して平方完成し円の積分の形にしても積分区間が煩雑になりすぎて解けず、 √を分子分母に掛けて展開してarcsinが出る形にしても結局 ab/y√(y-a)(b-y) の項の積分で止まってしまいます どうすれば良いのでしょうか dy/dx (y+1)を積分して(y+1)^2? 次の微分方程式の一般解を求めよ。 (1+y) (d^2y)/(dx^2) + (dy/dx)^2 = 0 dy/dx = p とおくと、 (1+y)p (dp)/(dy) + p^2 = 0 となり、 (i) (1+y) (dp)/(dy) + p = 0 (ii) p = 0 の2通りが考えられる。 (i)の場合 1/p (dp)/(dy) + 1/(1+y) = 0 の両辺をyで積分して log |p(y+1)| = C_1 つまり、 dy/dx (y+1) = C_1 両辺をxで積分して、 (y+1)^2 = C_1x + C_2 ←? という解を得る。 ・・・と本に書いてあります。しかし、 「両辺をxで積分して」の計算は間違ってないですか? 自分が計算すると、 dy/dx (y+1) = C_1 ∫ (y+1) dy/dx dx = C_1∫dx ∫ (y+1) dy = C_1∫dx ∫y dy + ∫1 dy = C_1∫dx y^2/2 + y = C_1x + C_2 になります。 積分して(y+1)^2になるなら、元々は2(y+1)じゃないといけないですよね、きっと。 ということで、どなたか検算をお願いします。 積分について 4-x^2 ∫ 2√(4-x^2-y)dy 0 この積分の計算の計算方法は以下のようなやり方でいいのでしょうか? 4-x^2-y =u とおき,両辺をyで微分して -1dy=duとし、 y=0のときu=4-x^2 y=4-x^2のときu=0 よって 4-x^2 ∫ 2√(4-x^2-y)dy 0 0 =∫ -2√(u)du 4-x^2 u=0 =[(-2)(2/3)u^(3/2)}] 4-x^2 =(4/3)(4-x^2)^(3/2) (終わり) 一つ疑問なのが、 “4-x^2-y =u とおき,両辺をyで微分して-1dy=duとする” この表現について、∂を使った偏微分にしなくていいのでしょうか? xとyがあるので、dではいけないようなきがするのですが、、、 もしこの解法が正しいのなら ∂ではなくdにしている理由を教えてください。 定積分を求めようとしています(2) 定積分を求めようとしています(2) S(π/2-0){1/(2+cosx)}dx (区間π/2-0における1/(2+cosxの定積分)を求めようとしています。 計算してみたのですが、計算が間違っているのか、結果が発散します。 cosx=yとおくと -sinxdx=dyとなり、 上の式は S{1/(2+y)}dy・1/(-sinx)と変形できます。 これを計算すると log|2+cosx|・1/(-sinx)となるため、 回答がlog2-1-log2-∞ となり、発散します。 正しい計算の仕方と解をご教授願います。 微分を含む式の積分 以下の式の積分の方法がわかりません。 ∫{c^2 - (dx/dt)^2}^(1/2) dt 仮に dx/dt=y と置くと、 ∫{c^2 - y^2}^(1/2) dt/dy dy=∫{c^2 - y^2}^(1/2) dt^2/dx dy =∫{c^2 - y^2}^(1/2) dx/y^2 dy となって、わけがわかりません。 どなたかアドバイスお願いします。 sinx/xの二重積分 ∫[0→π/2](∫[y/2→y]sinx/x dx)dy+∫[π/2→π](∫[y/2→π/2]sinx/xdx)dy という問題なのですが、sinx/xの積分は初等関数では解けないらしく特殊関数Si(x)を使うらしいのですが、まだSiは習っていません。 積分範囲-∞~+∞だとsinx/xを求めることができるらしいのですが、 この問題は積分範囲を-∞~+∞に変更するのですか? 2重積分 2重積分の質問です。 2重積分の計算で D={(x,y)|a≦x≦b,ψ1(x)≦y≦ψ2(x)}のとき ∬f(x,y)dxdy=∫[a→b]{∫[ψ1(x)→ψ2(x)] f(x,y)dy}dxですが ∬f(x,y)dxdy=∫[ψ1(x)→ψ2(x)]{∫[a→b]f(x,y)dx}dyでも可能でしょうか?? よろしくお願いします。 注目のQ&A 「前置詞」が入った曲といえば? 新幹線で駅弁食べますか? ポテチを毎日3袋ずつ食べています。 優しいモラハラの見抜き方ってあるのか モテる女性の特徴は? 口蓋裂と結婚 らくになりたい 喪女の恋愛、結婚 炭酸水の使い道は キリスト教やユダヤ教は、人殺しは地獄行きですか? カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど