ベストアンサー ※ ChatGPTを利用し、要約された質問です(原文:条件付き確率の問題です。) 条件付き確率問題の解法とは? 2017/07/02 12:31 このQ&Aのポイント 条件付き確率の問題では、事象 A が事象 B の下で起きる確率を求めることが目的です。問題の解法には、ベイズの定理を利用する方法があります。具体的な問題では、事象 A や事象 B の根元事象を適切に表現することが重要です。 条件付き確率の問題です。 「すぐわかる確率・統計」(東京図書)の79頁に載っている問題です。 http://www002.upp.so-net.ne.jp/hoshitosugaku/images/Cprobability.jpg この問題では条件確率の公式 P(A|B) = P(A∩B)/P(B) の事象 A、B を A:P男が犯人である B:N先生がP男を目撃したと証言 と表現しています。解説にあるとおりベイズの定理に機械的に当てはめれば答えは出てきますが、事象 A や事象 B の、根元事象は具体的にどう表現したらいいのでしょうか。 たとえば事象 A は、被疑者の集合を U したとき U = A∪A' (A' は補集合) A = { P男 }, A' = {a1, a2, ……,a49} とでもすればよさそうですが、事象Bの方はさっぱりです。余事象B'が B':N先生がP男を目撃しなかったと証言 でいいのなら P(B) = 0.9, P(B') = 0.1 でいいのかも知れませんが、B の具体的な根元事象がわからないので P(A|B) = P(A∩B)/P(B) のP(A∩B)をイメージしにくいのです。 質問の原文を閉じる 質問の原文を表示する みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー f272 ベストアンサー率46% (8651/18505) 2017/07/02 21:39 回答No.1 N先生の発言に対する数学おばさんの解釈はおかしい。90%間違いないというのは、目撃した人物がP男である確率が90%ということだろう。 またベイズの定理を使った計算もおかしい。P(B|A^c)が1-0.9であるとは思えない。 結局のところ、わけのわからない話が書いてあるだけということになる。 質問者 お礼 2017/07/03 15:34 回答ありがとうございました。もう少し考えて再び質問させてもらいます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 確率の条件付き確率について 事象Aが起こったという条件の下で、事象Bが起こる条件付き確率PA(B)は次のように定義される。 PA(B)= P(A∩B)/P(A) となりますが 自分の使っている参考書に 「Aの起こる確率P(A)は P(A)= n(A)/n(U) = 事象Aの場合の数/全事象Uの場合の数と表せたんだね。 これに対して、条件付き確率PA(B)は 【事象Aは既に起こっている】という前提条件があるので、分母は全事象の場合の数n(U)の代わりにn(A)になり、分子は、事象Aが起こっている条件の下でBが起こるわけだからAとBの積事象の場合の数、つまりn(A∩B)になるんだね。 これから条件付き確率PA(B)は PA(B) = n(A∩B)/n(A) = n(A∩B)/n(U) / n(A)/n(U) より 公式 : PA(B)=P(A∩B)/P(A) が導かれるんだね。」 と書いてあるのですが 【事象Aは既に起こっている】という前提条件があるので、分母は全事象の場合の数n(U)の代わりにn(A)になり、分子は、事象Aが起こっている条件の下でBが起こるわけだからAとBの積事象の場合の数、つまりn(A∩B)になる。 という所が全く理解が出来ません。 なぜそうなるのでしょうか? 長くなりましたがよろしくお願いします。 条件つき確率ついての疑問 教科書にあった条件つき確率の定義がいまいちわからないので質問をします。 まず条件つき確率とは >一般に、標本空間Uにおける2つの事象A,Bについて,事象Aが起こったときに,事象Bが >起こる確率を,事象Aが起こったときの事象Bの起こる条件つき確率といい記号PA(B)で表す。 >PA(B) = n(A∩B)/n(A) = P(A∩B)/P(A) とあります。ここで、そもそもの確率の定義を考えたときにPA(B) = n(A∩B)/n(A)の関係性に 疑問が湧きました。 そもそもの確率の定義とは、同じ教科書から引用すると >各根元事象が同様に確からしい試行において,その標本空間をUとする。 >この試行におけるUの要素の個数をn(U)とし,事象Aの要素の個数をn(A)で表すとき,事象Aの >起こる確率P(A)は次の式で求められる。 >P(A) = n(A)/n(U) です。ある試行における全事象の要素の個数とある事象の要素の個数の割合が確率であると 言っているのです。 ということは、条件つき確率PA(B)=n(A∩B)/n(A)とは、Aを標本空間とし、Aが標本空間になるような 試行が,Uが求められときの試行とは別に行われたと解釈できます。 なのに、条件つき確率の説明ではあたかも標本空間Uが得られる試行しか行われておらず、 Aが標本空間ではないような印象を受けてしまいます。 この印象に対する疑問はおかしいのでしょうか?私の解釈は間違っていますか? 回答よろしくお願いします。 条件付確率の問題です 条件付き確率の問題です 答えはわかるんですけど、計算の仕方がわかりません・・ 3問あるのですが、1問でもいいのでよろしくお願いします。 (1)偏りのないコインを3回なげる実験で、表が少なくとも2回でたという条件のもとで 1回目の結果が表である確率を求めよ(答:4/3) A:表が少なくとも2回です事象 B:1回目が表である事象 と置き換え計算せよ (2)赤球5個、白球3個、緑球7個、青球5個が入っている箱を良くかき混ぜてから 1球取り出す実験を行う。取り出した1球が赤球ではないことがわかっているとき それが白球である確率をもとめよ(答:1/5) A:取り出す球が赤である事象 B:取り出す球が白である事象とおき、Bayes定理を適用し、P(B|Aバー)を求めよ (3)山田氏には、2人の子供がいて、そのうち少なくとも1人は男であることがわかっている もう1人も男である確率はいくらか(答:1/3) A:少なくとも1人は男の子である事象 B:2人とも男の子である事象 と置き換え計算せよ 注:第1子が男子であることがわかっているときとかえると解は1/2になることに注意 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 確率について質問です。 確率について質問です。 硬貨a硬貨bについて、表が出ることを1,裏が出ることを0とし、硬貨aは表、硬貨bは裏だったら、(0,1)と表す。 全事象U={(0,0),(0,1),(1,0),(1,1)} 根元事象 {(0,0)},{(0,1)},{(1,0)},{(1,1)} 次の事象をUの部分集合で表せ。 B:少なくとも1枚は表が出る 「少なくとも」というのは(0,1),(1,0)というのはわかるのですが、(1,1)も入れていいのでしょうか。この言葉に悩んでいます。 答えはB={(0,1),(1,0)}でしょうか。 それともB={(0,1),(1,0),(1,1)}なんでしょうか。 場合の数と条件付き確率について 条件付き確率は 「2つの事象A,Bに対して事象Aが起こったという条件の下で、事象Bが起こる条件付き確率PA(B)は次のように定義される。 PA(B)=P(A∩B)/P(A) このPA(B)=P(A∩B)/P(A)は PA(B)=n(A∩B)/n(A)の右辺の分子分母をn(U)で割ったものである」 ということは PA(B)=n(A∩B)/n(A) で条件付き確率は求められるということですよね。 「20本中2本の当たりが入っているクジがある。 1回クジを引いた後、そのクジを元に戻さないで、さらにもう一回クジを引く。 このとき、2回とも当たりを引く確率を求めよ。」 という問題の場合は 事象Aは:引いた2個のクジの1回目に引いたクジが当たり 事象Bは:引いた2個のクジの2回目に引いたクジが当たり とおいて 事象Aの場合の数 n(A)=2c1x19c1=38 通り 事象Aと事象Bがともに起こる場合の数 n(A∩B)=2c1×1c1 2通り よって、PA(B)= n(A∩B)/n(A)=2/38=1/19 で求められました。 しかし 「同形の赤球6個、白球4個の入った袋から まず球を1個取り出し、それを元に戻さないで、さらに1個の球を取り出すとき 取り出した球が2個とも赤球である確率を求めよ」 という問題の場合 同じように 事象Aは:引いた2個の球の1回目に引いた球が赤 事象Bは:引いた2個の球の2回目に引いた球が赤 とおいて 事象Aの場合の数 n(A)=6c1x9c1=54 通り 事象Aと事象Bがともに起こる場合の数 n(A∩B)= 6c1×5c1 = 30通り としたのですが解が合いません。 本当の解は1/3となっています。 私の考え方はどこが間違っているのでしょうか? よろしくお願いします。 他に解き方があるのはわかっていますがこの方法で解いてみたいのでお願いします。 確率の問題 確率の問題です。 「の中に、4個の白球、3個の黒球、2個の赤球が入っている。 ここから取り出した球を元に戻さないで白球を取り出すまで取り続けるとき、 黒球が取り出されるよりも先に(最初の)白球が取り出される確率を求めよ。」 答えは4/7で (1)白 (2)赤白 (3)赤赤白 の確率の積で三つの確率をだし、足して、結局自分で解けたのですが、 でもよく考えてみると、確率の定義によると、 「ある試行において起こりやすさが等しい根拠のある事象がn通りある。 また、事象Aが起こる場合が、このn通りの中のm通りである場合、この事象Aの起こる 確率P(A)はP(A)=m/nである。」(参考書抜粋) のはずだと思うんですが・・・。 自分でもなぜ確率の定義に沿ってやらなくても答えが出せるのかがわかりません。 この問題での根元事象などがわかりません。確率の定義に沿えばこの問題はどうとけますか? よろしくお願いします。 確率の問題がわかりません 度々お世話になっております。 以下の問題がわかりません。どなたか解説お願いします。 工場で製造している部品の生産工程では不良率が10%であることがわかっている。 (1)生産された部品3個を取り出したとき3個とも良品である事象をA、3個とも不良品である事象をBとする。AとBの和事象の確率を求めよ。 (2)生産された部品を市場に出荷する前に部品一個につき一回の検査を行う。検査員は不良品ならば必ず検出できるが、良品を誤って不良品と判定する確率が10%ある。不良品と判定された部品が実は良品である確率をベイズの定理を用いて求めよ。 あと自分なりにベイズの定理を調べた結果、 ベイズの定理というのは、ある一つの結果がわかっていて、その結果の下、更に何かおこる確率と認識したのですが、あっていますでしょうか? よろしくお願いします。 確率問題 (1)事象Aがおきる確率P(A)が0.2のとき事象Aがおきない確率P(?)をもとめよ。?はΑの上に棒がついてるやつのことです (2)事象BがAの排反でP(A∪B)=0.8のときAのおきる確率P(A)を求めよ 条件付き確率の乗法定理 条件付き確率のことがわからなくなってしまいました。 ここでは、事象Aが起こる確率をP(A)、事象Aが起こったときに事象Bが起こる条件付き確率をP(A,B)と表します。 「確率の乗法定理」 P(A∩B)=P(A)P(A,B) S君(私のことですが)は、次のような条件付き確率の問題(教科書の章末問題ですが)を表を作って解こうと思いました。 【問題】2つの箱A,Bがある。箱Aに赤玉1個を入れ、箱Bには赤玉49個、白玉50個(合計99個)を入れた。今、硬貨をを投げて、表が出たら箱Aから、裏が出たら箱Bから、1個の玉を取り出すとする。赤玉を取り出す確率を求めよ。 (問題をこの質問用に改変してあります) 正解は、(1/2)×(1/1)+(1/2)×(49/99)=74/99、ですが、 S君は、次のように、表を作って解こうとしました。 赤玉 白玉 計 表 1 0 1 裏 49 50 99 計 50 50 100 ※配列がちょっと崩れてしまいますが、赤玉、白玉、計の順番に左から1、0,1;49、50,99;50、50,100、です。 これより、(50/100)×(1/50)+(50/100)×(49/50)=1/2 S君の解答はどこがおかしいのでしょう? 思うに、S君の作った表の1、49、・・・などは、その根元事象は「同様に確からしい」とは言えないのではないかということです。すると、このような表そのものが無意味ではないかこということになります。だとすればどのような表なり樹形図を作ればいいのか、困ってしまいました。 また、根元事象が「同様に確からしい」とは言えないときも上の条件付きの確率に関する乗法定理は成り立つのでしょうか。ここのところもご教授いただければ幸いです。 重ねて、よろしくお願いいたします。 確率の問題 0≦P(A)≦1 についてなのですが、 参考書に、 たとえで、 P(A)=1についてなのですが、 サイコロを1回投げて、1、2、3、4、5、6 のいずれかの目がでる 事象をAとおくと、これは、全事象Uと一致するから n(A)=n(U) よってP(A)=1 と書いてありましたが、どうして、P(A)=1とわかるのです か? おしえてください 確率の考え方について教えてください 「3個の赤球と5個の白球から1つを選び出す時、赤球である確率を求める場合」 に 3個の赤球と5個の白球をそれぞれ区別して考えますが その理由としてこの公式を使うためであると考えていました。 「すべての根元事象が同様に確からしいとき、事象Aの起こる確率P(A)は P(A) =事象Aの場合の数/全事象Uの場合の数 」 区別をして考えると根元事象が 赤1、赤2、赤3、白1、白2、白3、白4、白5から一つ取り出す ということになり 全て1/8で、根元事象が起こる確率は等しい 区別して考えないと根元事象が 赤、白 だけになってしまい ここから一つを選択するのは球の数が違うので 起こる確率が等しくない そのために球を区別して考える、と考えていたのですが もし赤、白が両方とも3つだった場合 区別して考えないでも 起こる確率は等しくなりますよね? それなら区別して考えないでも、公式は使えるのでは、と疑問に思ってしまいました。 この公式を使うために、区別して考える という考え方が間違っているのでしょうか? よろしくお願いします。 確率の問題についての質問です 問題は 「n 本のくじの中からk 本の当たりくじが含まれている(n > k > 1). a 君とb 君がこの順に(a 君が先に引き 引いたくじは元に戻さずに,次にb 君が引く) 1本ずつくじを引く. 但し,どのくじも等しい確率で引かれるも とする. このとき,事象A = {a 君が引いたのはあたりくじである}, 事象B = {b 君が引いたのは当たりくじで ある} と置くと,確率及び条件付確率: (i)P(A), P(A^c), (ii)P(B|A), P(B|A^c), (iii)P(B) を求めよ.」 というものです。 突然出てきた「Aのc乗?」とBの確率の求め方が分かりません。 基礎的な問題だとは思いますが 回答よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 確率でわからないことがあります 数学A 条件付き確率で 「2つの事象A,Bに対して事象Aが起こったという条件の下で、事象Bが起こる条件付き確率PA(B)は次のように定義される。 PA(B)=P(A∩B)/P(A) このPA(B)=P(A∩B)/P(A)は PA(B)=n(A∩B)/n(A)の右辺の分子分母をn(U)で割ったものである」 という説明がされています。 それでこの問題を見てほしいのですが 条件付き確率の問題の一つで 「20本中2本の当たりが入っているクジがある。 1回クジを引いた後、そのクジを元に戻さないで、さらにもう一回クジを引く。 このとき、2回とも当たりを引く確率を求めよ。」 この問題を普通に解くと、P(A)×PA(B)=P(A∩B) で2/20 × 1/19 = 1/190となると思います。 それで一番上に書いてある公式(PA(B)=P(A∩B)/P(A)」)に当てはめてみると 1/19=1/190 ÷ 2/20 となることが分かったのですが 「PA(B)=P(A∩B)/P(A)は n(A∩B)/n(A)の分子分母をn(U)で割ったものである」ということは PA(B)=n(A∩B)/n(A)でも求められるということだと思うのですが この問題の場合、n(A∩B)とn(A)は一体何に当たるのでしょうか? この問題はそこからも求めることが出来ますか? よろしくお願いします。 数C 確率の乗法定理について質問があります 以下、教科書からの抜粋です 乗法定理とは 「2つの事象A,Bがともに起こる確率P(A∩B)は P(A∩B)=P(A)PA(B) 」 とあり、その例題として次の問題が出されました。 例題:赤玉3個と白玉5個が入っている袋から、玉を1個取り出し それをもとに戻さないで、続いてもう1個を取り出すとき 2個とも赤である確率を求めよ。 そして回答は次のようなものでした。 回答:最初に取り出した玉が赤であるという事象をA、2回目に 取り出した玉が赤であるという事象をBとすると P(A) = 3/8 最初に取り出した玉が赤であるとき、2回目は赤玉2個と白玉5個の 中から1個取り出すことになるから PA(B) = 2/7 2個とも赤であるという事象はA∩Bで表されるから、求める確立は 乗法定理により P(A∩B) = P(A)PA(B) = 3/8 × 2/7 = 3/28 以上、教科書からの抜粋でした。 この回答に理解できないところがあり、以下にそれを書きます。 (1)そもそも条件付き確立の定義は 「標本空間Uにおける2つの事象A,Bについて、事象Aが起こった時に、事象Bが 起こる確率を、事象Aが起こったときの事象Bの起こる条件付き確率という」 というものです。この例題の場合、事象Aが起こったときには事象Bは起こらないんじゃないでしょうか? なぜなら事象Aが起こったあとに、もう一度試行をしなければ事象Bは起こりえないからです。 故にこの例題ではPA(B)を定義できないと思うのです。 (2)乗法定理は PA(B) = P(A∩B)/P(A) を変形して得られたものですが、この変形前の式は PA(B) = n(A∩B)/n(A) の右辺の分母・分子にn(U)の逆数をかけて得たものです。 つまり事象A,Bともに標本空間Uの部分集合であるのです。 この例題の標本空間Uは赤玉3個と白玉5個が入った袋です。 Aはこの8個入りの袋を標本空間としていますが Bの場合は、一回目に赤玉を一つ抜いてしまっていますから、Aとは別の標本空間に属する 部分集合となってしまっています。 そのためこの例題の事象A,BをPA(B) = P(A∩B)/P(A) に当てはめることができないと思うのです。 (3)A,Bは同一の標本空間にないのでA∩Bをそもそも定義できないと思うのです。 そのため2個とも赤であるという事象はA∩Bで表されないと思うのです。 この3点が理解できない所です。 長文を読んでくださってありがとうございました。 私の考えのどこがおかしいのか、教えてください。 回答よろしくお願いします。 確率の問題 どうかよろしくお願いします。考え方も書いてくださるようお願いします。 表が出る確率がpで裏が出る確率が1-pのコインを3回投げる試行を考える。 ただし、0<p<1とする。1回目に表が出る事象をA,3回のうちちょうど2回だけ表が出る事象をBとする。次の問に答えよ。 (1) 確率P(B)、,P(A∧B)を求めよ。 (2) P(A∧B)=P(A)・P(B)が成り立つようなpの値を求めよ。 条件付き確率の式について ベイズ統計でおなじみの条件付き確率P(A|B)ですが、P(A,B,C|X)=P(A|X)P(B|X)P(C|X)という展開は無条件に成立するでしょうか。確率が積になるのは独立というイメージがあるのですが。 確率の問題が解けません. 確率の問題を解いているのですが、途中でつまってしまい解けません。 どなたか教えてください,よろしくお願いいたします。 U(論理和) Eは適当な確率空間における任意の事象・事象列 問題は (1) P(E1 U E2 U E3 U・・・U En)はnについて単調に増加することを示せ. (2) (1)の論理和を論理積に置き換えた式がnについて単調に減少することを示せ. 私の現在の考えは,,, (1)Σ[i=1からnまで]P(Ei)とおき、 それぞれP(E)は0から1の値をとるため単調に増加する. (2) 式をドモルガンを利用して論理和の形に直し,(1)と同じように解きたいのですが,式変形がうまくいきません. 以上のようになっています 「単調に増加する」という表現が線形に増加するという 意味でしたら(1)は間違っていると思われます.(2)については 1-Σ[i=1からnまで]P(Ei)の形に直せたような記憶がありますがうまく いってません。 ちなみにベン図などではなく公理での証明でお願いいたします. もう丸2日間考えていますがまったく分かりません、どなたかお分かりになる方教えてください、どうぞよろしくお願いいたします. 確率 袋の中に白球3個、赤球4個が入っている。 この中から同時に3個の球を取り出すとき、3個とも同色である事象をA、また、3個中少なくとも2個が白球である事象をBとおく。 このとき、確率P(A)、P(B)、P(AUB) を求める問題です。 できれば、n(AUB),n(A),n(B),n(A∩B) のあらわしかたで求めてください。 できれば、詳しく教えてほしいです。 すいません。 条件付確率 事象A、事象B がありそれぞれの事前確率は順に 0.6, 0.4 追加情報 θ1:Aが起きる、θ2:Bが起きる という情報を得られるがその信頼度は80% 事後確率 P(A|θ1), P(B|θ1), P(A|θ2), P(B|θ2) を求めよ。 という問いなのですが、回答には、 P(A|θ1) = 6/7 P(B|θ1) = 1/7 P(A|θ2) = 3/11 P(B|θ2) = 8/11 とあります。問題の意図がよくわからず、取りあえずθ1が与えられた場合の事後確率は、直感的に信頼度が80%なのだから P(A|θ1) = 4/5 P(B|θ1) = 1/5 じゃないの?とか思ってしまったのですが・・・。 どうも頭がこんがらがってしまったので、どなたかアドバイスを頂けないでしょうか。 確率の問題です 事象Aと事象Bが独立とし、P(A)=1/2,P(B)=1/5とする。P(C|A^c,B^c)=1/10,P(C|A^c,B)=1/20,P(C|A,B^c)=1/4,P(C|A,B)=1/8で与えられているとする。ただし事象Aの余事象をA^cで表すとする。 P(A,B,C)、P(C)を求めよ。 この問題の解き方を教えてください。 P(C)が定まらなくて、P(A,B,C)が求められません。 ちなみに、 余事象同士も独立になるのでしょうか? 条件付き確率の中にある「,」は⋂のことでしょうか? どなたか教えてください。よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
回答ありがとうございました。もう少し考えて再び質問させてもらいます。