- 締切済み
ドリンクの缶の表面積の出し方を教えて下さい
ドリンク缶の表面積、側面積はどうやったら出せるのでしょうか?体積は375mlです。 375ml=半径×半径×π×缶の高さ 半径、高さが出てないのですが、どうやって方程式を出すのでしょう? 半径、高さはcmで出します
- みんなの回答 (3)
- 専門家の回答
みんなの回答
- transcendental
- ベストアンサー率51% (28/54)
缶を完全な直円柱(半径r、高さh)とし、作る側に立ってその表面積S=2πr^2+2πrhを最小にすることを考えます。(体積V=πr^2・h=375) (缶を作っている金属の厚さも考えません) h=V/(πr^2)を代入して、 S=2πr^2+2πr・V/(πr^2)=2πr^2+2V/r となり、dS/dr=(4πr^3-2V)/r^3より、r=(V/2π)^(1/3)のとき、Sは最小値、3・(2π)^(1/3)・V^(2/3) をとります。 V=375を代入すると、Sが最小のときr=3.9079632(cm)、h=7.8159264(cm)、S=287.8737439(cm^2) となりますが実際は側面と底面を作る材料が違うためか、底面の形が円であるためか、少しずれていると思います。
- ORUKA1951
- ベストアンサー率45% (5062/11036)
簡単に解けますが・・・ 単純な円筒形と仮定して ○ □□□ ○ という展開図を描き、半径、高さ、表面積をそれぞれ r h s とすると πr² + 2πrh + πr² = s (底面積) 側面 底面積 1mLは1cm³ですから 側面積(s)は、2πr(r + h) cm² になります。 一方体積vは、πr²h = 375cm² ですから、 h = 375/(πr²) S = 2πr² + 2πr375/(πr²) = 2πr² + 750/r r = √(375/πh) S = 2π√(375/πh)² + 2π√(375/πh)h = 750/h + 2√(375)√π√h = 750/h + 10√(15)√π√h かな・・・こちらは自信ない。 >半径、高さが出てないのですが、どうやって方程式を出すのでしょう? それらを未知数として方程式を書きます。 答えは、 「rを半径とすると(2πr²+750/r)cm²」しかです。
- shintaro-2
- ベストアンサー率36% (2266/6245)
>ドリンク缶の表面積、側面積はどうやったら出せるのでしょうか?体積は375mlです。 >375ml=半径×半径×π×缶の高さ >半径、高さが出てないのですが、どうやって方程式を出すのでしょう? 与えられた条件では無理です 材料が○○平方センチの板とか何か制約があるのでは?
補足
ヒントの中に書いてあるのは、 高さ(h), 表面積(SA), 半径(r)を使ってグラフを作り、縦をSA, 横をrで考える。 半径を2cmから6cmで想定。 グラフの線はUの字になるそうです。