ベストアンサー 三角形の相似の証明をお願いします。 2012/11/16 21:46 中3数学の問題です。2つの二等辺三角形ABCとADEが頂点Aを一致させて、重なっています。三角形ABCの底辺BCと三角形ADEの辺ADが交差する点をFとし、 三角形ABCの辺ACとDEが交わる点をGとし、BCとDEが交わる点をHとします。このとき、三角形ABFとCGHの相似を証明してください。 画像を拡大する みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー asuncion ベストアンサー率33% (2127/6290) 2012/11/16 22:13 回答No.1 △ABFと△DHFにおいて、 ∠ABF=∠FDH …… (1) ∠AFB=∠DFH …… (2) (1)(2)より、△ABF∽△DHF …… (3) 一方、△DHFと△CGHにおいて、 ∠FDH=∠GCH …… (4) ∠FHD=∠CHG …… (5) (4)(5)より、△DHF∽△CGH …… (6) (3)(6)より、△ABF∽△CGH 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) bgm38489 ベストアンサー率29% (633/2168) 2012/11/17 10:43 回答No.2 2つの二等辺三角形は、等しいのでしょうか?つまり、△ABCが点Aを中心に回転したものが△ADE?そうでないと、下の小さな三角形を経由して、二角が等しいため相似という証明はできなくなります。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 相似の証明教えてください 写真のようにAB=ACの二等辺三角形がある。辺BC上に点Dをとり∠ABC=∠ADEとなるように辺AC上に点Eをとる。次の問いに答えよ (1) △ABD∽△DCEを証明せよ (2) AB=AC=12cm、BC=10cmとする。点Dが辺BCを2:3の比にわける点であるときAEの長さを求めよ (1)の相似条件が何かわからないです。 (2)はよくわからないので式も一緒に教えてください 相似の証明教えて 写真のようにAB=ACの二等辺三角形がある。辺BC上に点Dをとり∠ABC=∠ADEとなるように辺AC上に点Eをとる。次の問いに答えよ (1) △ABD∽△DCEを証明せよ (2) AB=AC=12cm、BC=10cmとする。点Dが辺BCを2:3の比にわける点であるときAEの長さを求めよ (1)の相似条件が何かわからないので証明すべて教えてください。 (2)はよくわからないので式も一緒に教えてください 中3の相似の問題教えてください! 中3の相似の証明教えてください! 右の図の△ABCはAB=AC,AB:BC=2:1の二等辺三角形である。辺BC上にBD:DC=1:2となる点Dをとり、辺AC上に∠ADE=∠ABCとなる点Eをとる。 (1)△ABD∽△DCEを証明しなさい。 (2)AE:ECを求めなさい。 (3)二等辺三角形ABCの面積が54平方cmであるとき、△ADEの面積を求めなさい。 この問題です。分かるやつだけでもいいので教えてください!! 画像横になっていたらすみません;; 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 証明を教えてください! 図の△ABCは、AB=ACの直角二等辺三角形である。辺BC上に点Dをとり図のように、AD=AEとなる直角二等辺三角形ADEをつくり、DEとACとの交点をFとする。 このとき「BD=CE」であることを証明しなさい。 という問題です。教えてください! 三角形の相似 こんばんは、次の問題でどうして相似になるのかが理解できないので、教えてください! 三角形ABCを平面内で、Bを中心にして回転させ、頂点Aがもとあった三角形の辺AC上にくるように移動する。頂点A,Cが移動した点をそれぞれ、D,Eとし、辺DEとBCとの交点をFとする。 このとき三角形BDAと三角形BECは相似である。 とあって、三角形BDAと三角形BECは相似になるのかがわかりません。回答お願いします・ 三角形の相似 図のように.∠ACB=90°の直角三角形ABCがある. 辺AB上に点D.辺BC上に点Eがあって.AD=DE.DE⊥BCである. また.点Cから辺ABに垂直CFを引き.線分AEとCFの交点をGとする. (1)△AFGと△ACEが相似であることを証明してください (2)AB=9cm.AD=4cmのとき.CGの長さを求めてください 解けなく困っています 図形の証明です。相似?手詰まりです! AB=ACである二等辺三角形ABCの内部の1点Pから辺BC,CA,ABにおろした垂線の長さをa,b,cとする。 bc=a^2 を満たす点Pは、三角形ABCの内心I、頂点B,Cを通る円上にあることを証明しなさい。 bc=a^2 より a:b=c:a かとは思いましたが、結論の「円上にあること」 に結び付けられません! お力をお貸し下さい! 数学の証明問題 今年度から高校生になるもので、宿題で困ってます。数学の問題で・・・ △ABCの∠B、∠Cの二等辺三角形が、辺AC,ABと交わる点をそれぞれD.Eとする。ED平行BCならば、△ABCは二等辺三角形であることを証明せよ。 という問題と、 △ABCの各頂点を通り、それぞれの向かい合う辺に平行な直線の交点を、P,Q,Rとする。△ABCの各頂点から向かい合う辺に下ろした3本の垂線AD,BE,CFは、△PQRの外心で交わることを証明せよ。 という問題がどうしてもわかりません。 証明お願いします!!! 相似な図形 (1)画像の図において△DEFで辺EFを底辺とするときの高さは△ABCで辺BCを底辺とするときの高さの何倍になっていますか? (2)△ABC∽△DEFでその相似比が1:1であるとき2つの三角形はどんな関係にあるといえるか? 教えて下さい!! 数学の証明問題について 数学の証明の問題がわからないので質問させていただきます。 この問題の答えとできたら解き方も教えていただきたいです。 1.正三角形ABCの辺ACの中点をDとし、辺BCのCを超えた延長上に点EをCD=CEであるようにとれば、DB=DEである。 2.二等辺三角形ABCにおいてAB=ACとする。辺AC上の点をD、辺BCのCを超えた延長上に点EをCD=CEであるようにとったとき、DB=DEとなるのは、Dがどんな点の場合か。 3.問題2から次の問題を得る。△ABCにおいて、AB=ACとし、∠Bの二等分線とACとの交点をDとする。BCのCの超えた延長上に点Eを、CD=CEであるようにとればDB=DEである。 4.△ABCにおいてAB=ACとし、辺ACの中点をDとする。辺BCのCを超えた延長上の点をEとしたとき、DB=DEとなるのは、Eがどんな点の場合か。 5.問題4から次の問題を得る。△ABCにおいてAB=ACとし、辺ACの中点をDとする。辺BCのCを超えた延長上に点EをCE=1/2BCにとればDB=DEである。 6.直角二等辺三角形ABCにおいて∠A=90°とし、∠Bの二等分線とACとの交点をDとする。CからBDへの垂線の足をEとすれば、BD=2CEである。 以上、6個の問題です。 回答よろしくお願いしますm(_ _)m 平行線 2辺が等しい 幾何学の問題で、解説を読んでもわからない箇所があります。 問題は、 二等辺三角形ABCの頂点Aから底辺BCにおろした垂線の足をDとし、DからABにおろした垂線の足をEとする。点Eを通ってBCに平行にひいた直線が△ABCの外接円と交わる点をFとすると、AF=ADである ことを証明することです。 略解 Aにおいて円ABCに接線ATをひく。∠TAB=∠ACB=∠ABC ゆえにTAはBCと平行 またEFはBCに平行、ゆえにTAとEFは平行。ここからがわかりません。 ゆえに、∠AFE=∠TAF=∠ABF、∠TAF=∠ABFがわかりません。錯角や同位角ではないとおもいます。二つ目のわからないことは、∠AFE=∠TAF=∠ABFゆえに AF²=AB・AE これは相似比から導けないと思います。 二つも質問して、すいません。どなたか証明を教えてください。お願いします。 相似と合同 ふたつ質問があります。どちらもあと一つ条件が見つけられません。よければ探す過程を教えてください。 (1)△abcの頂点aから辺bcにひいた垂線をadとする。adを直径とする円oと辺ab・acとの交点をそれぞれe・fとし、adとefの交点をgとするする時。→△afeと△abcの相似条件で分かったのは∠a(共通)です (2)円oに内接する二等辺三角形abc(ab=ac)があり、直線mnは点cで円oの接線である。また点bを通るmnに平行な直線が、acと円oに交わる点をそれぞれd・eとしaとe、cとeを結ぶ。→△abdと△aceの合同条件で、分かったのは、ab=acと∠abe=ace(弧aeの円周角)です 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 中学数学で相似についておしえてください。 相似のところで、 「三角形ABCと三角形PQRが相似で、AとP、BとQ,CとRがそれぞれ対応する時、三角形ABC相似三角形PQRと書く」と書いてありました。(三角マークとかは出せませんでした。すみません・・) そういう時、もし、辺ABと辺QRとかが対応する辺ってことでもいいのかどうかで、 いけないんじゃないかと思ったんですが、問題であれって思ったのがあってわからなくなってしまいました。 三角形ABCとDEFで次の関係の時相似といえるか、という問題で、 (1)DE:AB=DF:BC=EF:CA (2)AB:DE=BC:EF、角B=E (3)AC:EF=BC:DF、角C=F (4)AB:DE=AC:EF,角A=D (5)角A=D、角B=F (6)角B=F,角C=Eです。 答えは(4)以外はすべて相似でした。 これってDFとBCとかは対応しているっていうことでしょうか? 数学が苦手でぜんぜんわかりません。 もし、よかったら教えてください。 相似条件の反例に関する証明 三角形ABCがある。このとき、∠ACB<90°で、∠ACB=∠DFEで、BC:EF=AB:DEとする三角形DEFを考える。このとき、AC:DF≠AB:DEである場合が必ず存在することを証明せよ。 相似条件には、「二組の辺の比とその間でない角がそれぞれ等しい」というのは含まれていません。反例を示す過程で思いついたので証明をしてみようとおもったですが、行き詰まったので証明を完成もしくは手伝っていただけると幸いです。 中学数学の問題です。 わからなくて困っています。 どなたかお願いします。 「AB=AC、∠A=90°の直角二等辺三角形がある。 線分DEを折り目としてこの三角形を折り、頂点Cを辺AB上の点C´に重ねたところ、辺C´Eと辺BCは平行となった。また、線分BEとC´Dの交点をFとする。 次の問いのそれぞれを証明せよ。 (1)BEは∠ABCの2等分線である。 (2)△EFDと△C´EDは相似である。」 直角二等辺三角形を用いた平面図形の証明問題 ⊿ABCを∠A=90°、AB=ACとなるような直角二等辺三角形とする。辺AB、AC上に点D,Eをそれぞれ AD=2BD、CE=2AEとなるようにとると、∠ADE=∠EBCとなることを示せ。 という問題がわかりません。 点EからBCに平行な直線を引いて考えればいいのかなと思ったのですが、そこで行き詰ってしまって… よろしくお願いします。 中学数学の相似比 相似比の問題です。 どうやって解いてよいのかまったく解りません。 「△ABCで、BC(底辺)上に、BD:DC=2:3(cm)になるように 点Dをとり、頂点AとDを結ぶ。∠BAD=∠Cのとき、ABの長さを求めよ。」 △ABD∽△CADになるのかな~?程度しか解りません。 解き方を教えてください。 よろしくお願いします。 中3 数学 相似 解説が一言少ない参考書にこのような 問題がありました 図は添付しておきました DE平行BC、△ADE=2×△BCDのとき △ADEと△ABCの面積の比を求めなさい 考え方 AD=xcmとすると、△ADE=2×△BCDより、 (x/10)²△ABC=2×(10-x/10)△ABC ※(10-x/10)には()はありません、区別させるために()をつけました ちなみに答えは (4-2√3):1 だ、そうです 僕はこの(x/10)²△ABC=2×(10-x/10)△ABC が全く理解出来ません・・・ 分かる方ご回答お願いします。 平面図形の問題 ------------------------------------------------------------------------ △ABCの内心をIとし,Iを通るAIの垂線をひき,辺AB、辺ACとの交点をそれぞれD,Eとする。 DB=2,EC=3の時,DEの長さを求めよ. ------------------------------------------------------------------------ この問題に苦戦しています. まず点IからAB,ACに垂線を下ろして相似な直角三角形を作って式を立てましたが,恒等的な式が出てきただけで進展がありませんでした. △ADEは二等辺三角形で,点IがDEの中点だということはすぐにわかるので AD=AE=x ∠BAI=∠CAI=α ∠ABI=β ∠CAI=γ とおいていろいろ試した結果 求めるものは2xsinα であり {2+x(sinα)^2}tanβ={3+x(sinα)^2}tanγ=(△ABCの内接円の半径) という式は立ちましたが,そこからβとγを消去するすべが見当たりません. 相似関係で解けるということだそうなのですが,上記で考察した他に相似な図形などあるのでしょうか? この問題の解法の糸口を御存知の方は「糸口のみ」の御教授宜しくお願い致します. 教えてください! 知人から「頭の体操」と題して出題されましたが、チンぷんカンぷん。解き方と答えをぜひ教えてください! 「二等辺三角形ABCがあります。(Aが頂点)点Bから辺ACに向かって角Bを二等分する直線BDが引かれています。(DはAC上の点)BD+AD=BCのとき、角Aは何度ですか?」 よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など