締切済み 解き方を教えてください・・・ 2012/07/24 14:09 3次方程式x^3+ax+b=0の1つの解が1、ほかの解が虚数であるとき、実数aの値の範囲を求めよ。 解き方がわかりません・・・。 みんなの回答 (1) 専門家の回答 みんなの回答 fukuda-h ベストアンサー率47% (91/193) 2012/07/24 14:52 回答No.1 1つの解が1だから、x=1を代入して 1+a+b=0 からb=-a-1~bを消去すると x^3+ax-a-1=0 x^3-1+ax-a=0 (x-1)(x^2+x+1)+a(x-1)=0 (x-1)(x^2+x+a+1)=0 x^2+x+a+1=0が虚数解をもつのでD=1-4(a+1)<0からa>-4/3 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 緊)2次方程式、高次方程式 緊)2次方程式、高次方程式 1番、 2次方程式x^2-ax+2a+5=0が虚数解をもつような実数aの値の範囲を求めなさい。 2番、 2次方程式2x^2+kx-k-1=0が実数解をもつような実数kの値の範囲を求めなさい。 上の問題がわかりません;; 回答お願いします!!! 解き方がわかりません( ´;ω;`) 1) 2つの2次方程式 x²+ax+a+3=0 , x²-ax+4=0 がともに虚数解をもつとき、定数aの値の範囲を求めよ。 2) 2つの方程式 x²+2ax+a+2=0 , x²-4x+a+3=0 のうち、どちらか一方だけが実数解をもつように、定数aの値の範囲を定めよ。 3) a , b , c を定数とする。 2次方程式 ax²+bx+c=0は、2次の係数aと 定数項cが異符号ならば、異なる2つの実数解をもつことを示せ。 わからないので教えてください(´・ω・`) 2つの2次方程式 x²+ax+a+3=0 , x²-ax+4=0 が ともに虚数解をもつとき、定数aの値の範囲を求めよ。 2つの方程式 x²+2ax+a+2=0 , x²-4x+a+3=0 のうち、どちらか一方だけが実数解をもつように、定数aの値の範囲を定めよ。 a , b , c を定数とする。 2次方程式 ax²+bx+c=0は、2次の係数aと 定数項cが異符号ならば、異なる2つの実数解をもつことを示せ。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 解の範囲 a,bは実数とする。2次方程式x^2+ax+b=0が0<x<1、1<x<2の範囲に1つずつ解をもつ。 このとき、2次方程式x^2+bx+a=0は実数解をもつことを示し、大きい方の解のとり得る値の範囲を求めよ。 という問題があります。 どれだけ考えても解き方が分かりません。 誰か教えて下さい。 ちなみに答えは 1<x<√2です 数学 a、bを実数とする。xの方程式x^2+ax+4=0が解-1+biをもつとき、a、bの値を求めよ。ただし、iは虚数単位とする。 解法がわからないです…。回答、よろしくお願いします。 数学II 方程式 数学IIの方程式で解法がわからないものがあったので投稿しました。回答、よろしくお願いします。 a、bを実数とする。二次方程式x^2-ax+b=0は二つの虚数解α、βをもち、x^2+3ax+2b=0の解はα^2、β^2であるとする。このとき、aおよびbを求めよ。 解法だけでよいです。よろしくお願いします_(._.)_ 数学II 方程式 数学IIの方程式で解法がわからないものがあったので投稿しました。 a、bを実数とする。二次方程式x^2-ax+b=0は二つの虚数解α、βをもち、x^2+3ax+2b=0の解はα^2、β^2であるとする。このとき、aおよびbを求めよ。 教科書を見ろはやめてください。回答、よろしくお願いします。 2次方程式。解と係数の関係の問題 「2次方程式x^2+ax+b=0が0でない解α、Βをもち、α^2+Β^2=3、1/α+1/Β=1が 成り立つとき、実数a、bの値を求めよ」という問題ですが、 解と係数の関係より、α+Β=-a、αΒ=b よって、α^2+Β^2=(α+Β)^2-2αΒ=a^2-2b=3 1/α+1/Β=(α+Β)/αΒ=-a/b=1より、(a、b)=(-3、3)、(1、-1)と計算できます。 答えも(a、b)=(-3、3)、(1、-1)となっていますが、 実際に(a、b)を使ってできる2次方程式は、 x^2-3x+3=0・・・・・(1)、x^2+x-1=0・・・・・(2)の2つで、 (1)について解くとx=(3±√-3)/2、(2)ついて解くとx=(-1±√5)/2となり、(1)が虚数解と なりますが、問題で、0でない実数解α、Βをもつとなっているので、虚数解でも問題ないとのこと でしょうか? ちなみに、(1)の解だと1/α+1/Β=1は成り立ちません。 α=3+√-3、Β=3-√-3とおいて、 1/(3+√-3)/2+1/(3-√-3)/2=2/(3+√-3)+2/(3-√-3)(有理化?)して (2(3-√-3)+2(3+√-3))/(3-√-3)(3+√-3)=(6+6)/(9-3)=2で成り立ちません。 出展:武蔵工大 複素数 P(x)=x^3+(1-2a)x^2+2ax+b (a,bは実数の定数)があり、P(-1)=0を満たしている。 ①方程式P(x)=0が異なる2つの実数解をもつときのaの値がわかりません。教えていただきたいです。 異なる2つの実数解から、判別式D>0 を使うんだと思うのですが、 P(x)=(x+1)(x^2-2ax+4a)から、0=(x+1)(x^2-2ax+4a)で、これが(x^2-2ax+4a)=0のとき異なる実数解を持てばいいのだからD>0を使うのかなって、考えてるんですが、aの値が3つに固定されていて、範囲では無いので悩んでいます。 なお、答えはわかりません。 高次方程式 実数係数の方程式kx^2-(k+3)x-1=0が虚数解a±biを持つとする。このとき、kの値の範囲は□であり、特に解が純虚数となる場合のkの値は□である。 また、A=a^2+b^2のとりうる値の範囲は□である。 この2次方程式の判別式をDとすると、条件よりD<0 を解いて-9<k<-1 解が純虚数となるときk+3=0を解いてk=-3 までは解いたのですがA=a^2+b^2のとりうる値の範囲が分かりません。 ちなみに慶応大学の入試問題です。 数学についての質問です 3次方程式 x^3+ax^2+b=0・・・* (a,bは定数)があり、x=1は*の解である (1)bをaを用いて表わせ (2)*が異なる3つの実数解を持つようなaの値の範囲を求めよ (3)(2)のとき、*の異なる3実数解をα、β、γとするとき、aの値を求めよ がどうしてもわかりません よろしくお願いします 大至急お願いします(´Д` ) P=x^3-3ax+(2a^2+a)x+bがあり P(2x)=0を満たしている。 ただし、a・bは実数の定数。 (1)bをaを用いて表せ (2)方程式P(x)=0のすべての解が実数であるとき、aのとり得る値の範囲を求めよ。 (3)方程式P(x)=0が重解をもつとき、aの値を求めよ。 またそのときのP(x)=0の解をすべて求めよ。 1はできたので 2と3をお願いします!! 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 高校数学の質問です。難しいです。 こんばんは、高校数学の問題でさっぱり検討もつかない問題がありましたのでここで教えて頂きたいと思って質問しました。3つ答えていただけるとありがたいですが、どれも歯ごたえがあり、難しいのでどれか一つだけでも嬉しいです。 以下の2問です (1)aを実数とする。xについての方程式 |x^2+ax+2a|=a+1 が異なる実数解をちょうど2個持つようなaの値の範囲を求めよ (2)u,vを実数とし、xの2次方程式x^2-2ux+1-v^2=0の実数解α、β(α≦β)が |α|+β<4を満たしている、点(u,v)の存在する範囲を求めよ (3)xに関する方程式 (x^2+ax+b)(x^2+bx+a)=0 が4個の異なる実数解を持つような実数a,bの条件を求め、点(a,b)の存在する範囲を求めよ。 以上3問となりますが、どなたか教えていただけないでしょうか? 2次方程式 (1)2つの2次方程式 x^2+ax+a=0 、4x^2+(2a+4)x+a^2=0 がともに実数解をもつような定数aの値の範囲は(ア)であり、少なくとも一方が実数解をもつような定数aの値の範囲は(イ)である。 (2)2次不等式2x^2-ax+3<0の解は1/2<x<bである。 このとき、定数a、bの値を求めよ。 解答 (1)(ア)-2/3≦a≦0 (イ)a≦2、4≦a (2)a=7、b=3 解説よろしくお願いします。 高次方程式 xの3次式P(x)=x^3-3ax^2+(2a^2+a)x+bがあり、P(2a)=0を満たしている。 ただし、a、bは実数の定数とする。 (1) bをaを用いて表せ。 (2) 方程式P(x)=0のすべての解が実数であるとき、aのとり得る値の範囲を求めよ。 (3) 方程式P(x)=0が重解をもつとき、aの値を求めよ。また、そのときのP(x)=0の解をすべて求めよ。 解法が(1)からわからないです(・_・;) 回答、よろしくお願いします_(._.)_ 高次方程式 xの3次式P(x)=x^3-3ax^2+(2a^2+a)x+bがあり、P(2a)=0を満たしている。 ただし、a、bは実数の定数とする。 (1) bをaを用いて表せ。 (2) 方程式P(x)=0のすべての解が実数であるとき、aのとり得る値の範囲を求めよ。 (3) 方程式P(x)=0が重解をもつとき、aの値を求めよ。また、そのときのP(x)=0の解をすべて求めよ。 解法が(1)からわからなくて困ってます。 回答、よろしくお願いします。 こんばんわよろしくお願いします。数Iの問題です。 こんばんわよろしくお願いします。高一で分からない問題がありましたので質問させてください。 aを実数とする。xの方程式ax^2-4x+2a=0とx^2-2ax+2a^2-2a-3=0がある。2つの方程式がともに実数解をもつようなaの値の範囲を求めよ。 また、aが整数である時、2つの方程式がともに少なくとも一つの正の実数解を持つようなaの値を求めよ。 一つ目は二つの式から0を消去して判別式D≧0で合ってると思うのですが、2つ目が全く分かりません。 教えていただけないでしょうか? 4次方程式の虚数解αが(α+1/α)^16>0 4次方程式 x^4-x^3+ax^2+x+1=0 は虚数解αをもち, (α + 1/α)^16>0 のとき,実数aの値を求めよ. (答)a=5/2 , (6±3√2)/2 いったいどのようにしてaを求めるのでしょうか? 3次方程式 3次方程式x^3+(a+5)x^2+(2a+b+12)x+a^2+b=0(a,b,は実数の定数)はx=-2を解に持っている。 この方程式が虚数解α,βを持ち、α^2+3αβ+β^2=11が成り立っている。このときのaの値を求めよ。また、β^2+3β+4αの値を求めよ。 この問題を教えてください。 x+2を因数にもつので、(x-2){x^2+(a+3)x+(a^2-6)}=0となり、{x^2+(a+3)x+(a^2-6)}=0が虚数解をもてばいい、というところまでわかりましたが、ここから先が分からないので教えてください。 因数定理 a,b,cを実数とする。整式P(x)=2x^3-ax^2-bx-cは、P(1)=6,P(2)=8を満たすとする。 (1)P(x)を(x-1)(x-2)で割った余りを求めよ。 (2)bとcを、aを用いて表せ。 (3)Q(x)=P(x)-6とおき、(2)よりQ(x)を表せ。また方程式Q(x)=0が虚数をもつようなaの値の範囲を求め、その解のうち、虚数の解の実部が整数となるaの値を求めよ。 (1)が解けないので前に進めません。公式とかってありますか? 教科書や参考書を見ても、違うタイプの問題しか載っていなくて困ってます。 ヒントをお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など