ベストアンサー 積分の問題でちょいと変わったモノだけど 2004/01/05 01:02 y=sinxのグラフを考えて ∫[-π~π](sin^5)xdx を In=∫[0~π/2](sin^n)xdx で表すというものです。 ・・形がうまく導き出せず困っています。 よろしくお願いします。 みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー suima ベストアンサー率32% (13/40) 2004/01/05 03:02 回答No.2 sinxは奇関数なので、(sin^5)xも奇関数。 よって、[-π,π]で積分した値は0 となってしまうと思うのですが・・・。 |(sin^5)x|を[-π,π]で積分するのなら、 4I5となります(I5の4倍) これはグラフを書いてみれば対象性からすぐわかると思います。 通報する ありがとう 0 広告を見て他の回答を表示する(1) その他の回答 (1) road1 ベストアンサー率0% (0/1) 2004/01/05 02:32 回答No.1 lnってなんでしょうか?対数(log)のことですか? だとしたら変な書き方になっていますよ?補足説明お願いします。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数III 定積分 In=∫[0→π/2] sin^n xdx, Jn=∫[0→π/2] cos^n xdx (n=0,1,2…)とする。 In=Jnを示せ。 cosx=sin(π/2-x) だから、 π/2-x=t、 dx=dt x:0→π/2 t:π/2→0 定積分の値は積分定数の取り方によらない。つまり、 Jn=∫[π/2→0] sin^n tdt = ∫[π/2→0] sin^n xdx=In これで合ってますか? 積分。 二つのグラフがあります。 y= 5sinx y=sin(5x) (0<=x<=2π) これらのグラフの長さが同じであることを 証明したいのですが、どうすればできますか? 不定積分 不定積分です。 ①∮(0→1)√(1+√x)/√xdx ②∮(0→3)(x+x^3)√(1+x^2)dx ③∮sinx/3+sin^2xdx ④∮x√(x^2+2)dx 朝の小テストで分からなかった問題です。どうか教えてください。 積分の問題で解けません。 積分の問題で解けません。 解説お願いします。 ∫1/cos^4xdx ∫1/sin^4xdx sinx/x 不定積分と定積分 ∫sinx/xdx は求められないけど、級数で表せるそうなのですが、どのように表せますか。 もうひとつ、定積分∫(0->∞)sinx/xdx の求め方を、数学の得意な方は教えてください。 微分の問題 解き方を教えてください (1) y=sinx (2) ∫3xdx= (3)∫(x^2-4x+5)dx いろいろな積分 (1)∫cosx^3/(sinx^(1/2)dx (2)∫x^2(2ax-x^2)^(1/2)dx (3)∫(logx)^4/xdx (4)∫(arcsinx)^4dx (5)∫1/(a^2sinx+b^2cosx)dx (6)∫(1-x^2)^ndx これらの問題を解く上で、解説をして欲しいです。(1)については、すべてsinにすればいいのでしょうか?糸口が見えません。(2)は部分積分がいいでしょうか。(2ax-x^2)^(1/2) これを積分?(3)(logx)^5を微分すると形が見えてきますね。(6) は部分積分のにおいがしますが、どうしたらいいのやらと。それで分かるのだけでも協力いただけたら幸いです。結局(3)以外ほとんど駄目なのです。 sinx/xの二重積分 ∫[0→π/2](∫[y/2→y]sinx/x dx)dy+∫[π/2→π](∫[y/2→π/2]sinx/xdx)dy という問題なのですが、sinx/xの積分は初等関数では解けないらしく特殊関数Si(x)を使うらしいのですが、まだSiは習っていません。 積分範囲-∞~+∞だとsinx/xを求めることができるらしいのですが、 この問題は積分範囲を-∞~+∞に変更するのですか? 高校数学 下記の問題を教えてください。 1)y=x^4-x^3のグラフとx軸が囲む図形の面積を求めよ。 で、この問題を解くにはいちいち、微分、二重微分して増減表を書き、グラフを書いてから、積分するのですか? 2)y=(sinx)^2のグラフをかけ。 2sinxとか、sin3xとか、sin(シータ+π/2)とかはわかるのですが、2乗は手の付けようがありません。まずどうしたらよいでしょう。 3)nを自然数とするとき、関数y=x^(2n+1)ー(2n+1)xのグラフの概形を書け。 これも手の付けようがございません。 お教え願います。 積分の計算ですが… I_n =∫(0~Π/2) {sin(nx)/sinx} dx (書き方が合ってるか分かりませんが" _ "の後ろのものは右下に付いてる小さいやつです。名前知らなくてすみません)、とするとき I_(2n+2) -I_(2n) の値を求めよ という問題があって、答えが0になるはずなんですけど、なりません。 一応やったのがこうです。 I_(2n+2)-I_(2n) =∫(0~Π/2){sin(2nx+2x)/sinx}dx-∫(0~Π/2){sin(2nx)/sinx} dx =∫(0~Π/2)[{sin(2nx+2x)-sin2nx}/sinx]dx sinA-sinB= 2sin{(A-B)/2}cos{(A+B)/2}より =∫(0~Π/2) {2 sinx cos(2nx+x)}/sinx dx =2∫(0~Π/2) cos(2nx+x) dx t=2nx+xとおくとdx=dt/(2n+1) x:0→Π/2 ⇒ t:0→nΠ+Π/2 =2/(2n+1)∫(0~nΠ+Π/2)costdt ={2/(2n+1)}*[sint](0~nΠ+Π/2) ={2/(2n+1)}*sin(nΠ+Π/2) となってしまいます。どうすれば良いでしょうか? お願いします。 微分積分の問題3です 連立不等式0<=x<=π,sinx<=y<=sin2xの表す領域の面積を求めよ ↑この問題の解き方も教えてください よろしくお願いします 微分積分の問題の解き方を教えてください。 微分積分の問題の解き方を教えてください。 1、lim log10(1+h)/h 極限値 h→0 2、Y=sin^3(X)cos^2(X) 微分 3、Y=√(sinX) 微分 4、Y=X^2(sin2X) 微分 よろしくお願いします。 不定積分と広義積分の収束判定 ∫(0-∞)sinx/xdx が解けません。ヒントでもよいのでお願いします。 過去にも同様の質問がありましたが回答みてもよくわかりませんでした。 収束判定するときに優関数を選ぶコツっていうのはあるんでしょうか? あと ∫e^x/xdx ∫sinx/xdx の不定積分はどうなるんでしょうか? 積分 Y=√3sinx-cosx(π/6≦x≦7π/6) のグラフとx軸で囲まれた部分をx軸の周りに1回転してできる立方体の体積をVとするとV=? 被積分関数を三角関数の合成を利用して解くそうですが、難しくてよくわかりません。 いろいろと悩んだのですが 解き方がわかりません πy^2を積分すると sin^2(x-π/6)になって さらに積分すると 1-cos(2x-π/3)/2から2π^2になるのがさっぱりわかりません 数iiiの問題を教えてください! y=sinx+1/2(sin2x)+1/3(sin3x) (0≦x≦π)のグラフと 直線y=aとの共有点がちょうど2つになるような 定数aの値の範囲を求めよ。 どうしても解けず周りに質問出来る人もいないので 解き方を教えてください。お願いします。 三角関数の積分 1/三角関数 の積分は必ずできると聞いたのですが、本当でしょうか。 例えば 1/sinx です。 ∫1/sinxdx を試してみたのですが、うまくできませんでした。 ∫sinx/sin^2xdx とし、 ∫sinx/(1-cos^2x)dx cosx=tとおく。 dx = -1/sinx 与式 = -∫1/(1-t^2)dt = -(1/2)∫{(1/1+t)+(1/1-t)}dt = log|sinx| + C となりました。 しかし、これを微分しても与式になりません。 どこか間違っているのでしょうか。 答えでは、log|tan1/2| となっていたと思います。 あと、 ∫1/cosxdx と ∫1/tanxdx も答えだけでも良いので教えていただきたいです。 積分が分かりません・・・。 下の問題が分かりません。 問題数多いですが、、、よろしくお願いします。 本当に自分がばかすぎて困っています。 よろしくお願いします。 (1) ∫sin^2Xcos^3Xdx (2) ∫(0→2)√(2-X)dx (3) ∫(0→1)1/(√(4―X^2)dx (4) ∫(0→√3)1/(1+X^2)dx (5) ∫(0→π/2)Xsin^2Xdx (6) ∫(0→4)X^2/(X+1)dx (7) ∫(0→π/2)sin^6Xdx (8) ∫(0→π/2)sin^3Xcos^2Xdx (9) ∫(0→π/2)cos^7Xdx 積分問題 A=∫[0→π/2](sin^3x)/(sinx+cosx)dx B=∫[0→π/2](cos^3x)/(sinx+cosx)dx (1)A+Bを計算せよ。 (2)AとBが等しいことを示せ。 (3)Aの値を求めよ。 (1)A+B=∫[0→π/2]{(sin^3x)+(cos^3x)}/(sinx+cosx)dx =∫[0→π/2](1+sinx+cosx)/(sinx+cosx)dx =∫[0→π/2][{1/(sinx+cosx)}+1]dx =∫[0→π/2][{1/√2sin(x+π/4)}+1]dx =[0→π/2][1/{√2log tan(x/2-π/8)}+1]dx =1/{√2log tan(π/8)} + π/2 - 1/{√2log tan(-π/8)} =(2/√2)log tan(π/8) + π/2 になったのですがこのような方法でよろしいのでしょうか? (2)に関しては、どのようにして行ってよいのかわかりません。 (3)もどうようにわかりません。 教えて頂けないでしょうか? よろしくお願い致します。 積分 1/(sinx+cosx)の積分 sin^n(x)の積分 のやり方を教えてください。 積分文章問題(質問英語です) The graphs of y=cosx and y=sinx are drawn on the axes below. Find the exact area enclosed between the two curves from x=0 to x= 3Π /4 (shaded) こうやってみました。 ↓ ∫ [0 → Π /4 ] cosx-sinx dx + ∫ [ Π /4 → 2Π /4 ] sinx - cosx dx +∫ [ 2Π /4 →3Π /4 ] sinx dx + l ∫ [ 2 Π /4 → 3 Π/4 ] cosx dx} l 又は ∫ [0 → Π /4 ] cosx-sinx dx} + ∫ [ Π /4 → 3Π /4 ] sinx dx * ∫ [ Π /4 → 2Π /4 ] cos x dxと l ∫ [ 2 Π /4 → 3 Π/4 ]cosx dx l の面積が同じだから。 私の考え方は合っていますか? 又はもっといい考え方があれば教えて頂けますか? 又問題はexact areaで答えよとなっています。 例えば sin Π /4 , sin 2Π /4 などの exact value は知っていますが sin 3 Π/4 などの exact value はどうやって求めればいいのでしょうか? 注目のQ&A 「前置詞」が入った曲といえば? 緊急性のない救急車の利用は罪になるの? 助手席で寝ると怒る運転手 世界がEV車に全部切り替えてしまうなら ハズキルーペのCMって…。 全て黒の5色ペンが、欲しいです 長距離だったりしても 老人ホームが自分の住所になるのか? 彼氏と付き合って2日目で別れを告げられショックです 店長のチクチク言葉の対処法 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど