二分法やニュートン法があります。
1512^(1/5)を求めるということは、f(x)=x^5-1512として、f(x)=0の解を求めるということです。
(1)二分法
この方法は、不等式で解をはさみこみ、その幅を半分にしていく方法です。
まず、解をpとして、f(4)=-488,f(5)=1613から4<p<5はグラフからすぐわかると思います。
次に、4と5の平均値9/2について、f(9/2)=333.28...>0ですので、4<p<9/2が言えます。
さらに、4と9/2の平均値17/4について、f(17/4)=-125.42...<0ですので、17/4<p<9/2が言えます。
同様に、17/4と9/2の平均値35/8について、f(35/8)=90.84...>0ですので、17/4<p<35/8が言えます。
これを繰り返して不等式の幅を半分にしていきます。後2回繰り返せば、69/16<p<139/32が導けます。
4.3125<p<4.34375
この中間値277/64=4.328125をpの近似値とすれば、誤差は1/64=0.015625=1.5625*10^(-2)以下です(ちなみに、真の値は4.32424566021...ですので、誤差は0.00390...=3.90...*10^(-3)です)。
この方法の良いところは、
i)機械的にできる。(→コンピュータでやりやすい。2で割ることしかしないのもCPUにやさしい。)
ii)一般性がある。どんな(連続)関数に対しても適用でき、初期値をきちんと選べば必ず解に収束する。
iii)必要な精度から計算量をきちんと見積もれる。(→誤差は必ず1/2倍になるので、何回やればいいかわかる。目標があると安心してできるものです。)
逆に、欠点は、
i)意外と面倒くさい。(→やってみれば分かります。正直に言うと、電卓を使いました。)
ii)ニュートン法と比べて若干遅い。
(2)ニュートン法
以下の操作で近似数列を得ます。
<I>
適当にa[0]=aを選びます。
<II>
a[n]に対して、曲線上の点(a[n],f(a[n]))での接線lとx軸との交点のx座標をa[n+1]とします。計算すると、
a[n+1]=a[n]-f(a[n])/f'(a[n])
となります。今、f(x)=x^5-1512ですから、
a[n+1]=4a[n]/5+1512/(5a[n]^4)
です。
(ニュートン法については、http://ja.wikipedia.org/wiki/%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95やhttp://akita-nct.jp/yamamoto/lecture/2005/5E/nonlinear_equation/text/html/node4.htmlなどを参照)
たとえば、a=4として計算していくと、
a[0]=4
a[1]=701/160
a[2]=208910107703501/48294988560200
a[3]=497233465184106924865656292944425428879675975052946104980305190911017501
/114987304218392901251000081546750801105408063238443498705825654614200250
となります。a[3]を計算すると4.3242466510...です。
真の値が4.32424566021...なので、誤差は9.9087791...*10^(-7)です。たった3回で先ほどと比べて
3915倍の精度です。
ニュートン法の長所は、
i)圧倒的な収束の早さ(→1回の計算で誤差が(1/2)乗になる。二分法よりはるかの高速)
ii)機械的にできる。
iii)得られる分数がなぜか最良近似分数だったりする。(→これについては僕の思い込みかもしれません)
などがありますが、欠点も多く、
i)手計算じゃ限度がある。(→a[3]とか無理ですよ。電卓を使いました。すいません。)
ii)必ずしも回に収束するとは限らない。(→先ほどのリンクにもありましたが、振動したりします)
iii)二分法と比べ、適用できる関数の制限が厳しい。(→そもそも微分できなきゃいけません)
どちらの方法も、運に左右される要素はありません。No.2の方法ですと、(4,5)→(4.3,4.4)→(4.32,4.33)→という風に進めばかなり計算量は抑えられますが、(4,5)→(4.9,4.8,4.7,4.6,4.5,4.4,4.3,4.2)→とかだとかなり面倒です。まぁ、この方法も簡単で捨てがたいんですが。