小数と2進法
何進法の表記かわからないので、質問します。
問題は、
0<α<1となる数αに対し、2^(n-1)αの小数部分は、(*){nが奇数のときは、1/2以上、nが偶数のときは、1/2未満}を満たすという。(ただし、n=1,2,3・・・)二進法の考えを用いて、αの値を求めよ。
解答は、
与えられた条件(*)は、αを二進小数で表したときの小数第n位が{nが奇数のときは、1、nが偶数のときは、0}であることをを意味する。したがってαの二進小数表示は、α=0.101010・・・(1)という循環小数である。周期が2桁であるので、αを2^2=4倍し4αは、二進法で 10.101010・・・(2)と表されることから、(2)-(1)であるαの3倍は、二進法で10と表される。すなわち十進法の2である。ゆえに 3α=2 より α=2/3
この問題でα=0.a_1a_2a_3a_4・・・a_n・・・と表される小数は、10進法に限られるのか?三進法や八進法でよいのか?が疑問です。αは十進法であらわされるとは問題に書かれていないので、迷いました。
10進法の小数に2をかけると、その整数部分が二進法の小数第一位になるということなので、αは十進法の小数かと思いましたが、はっきりしません。どなたかαは十進法の表記なのか、その他の底の表記でもよいのか教えてくださいお願いします。