ペル方程式x^2-py^2=-1は常に整数解を持つか?
先日、
http://okwave.jp/kotaeru.php3?q=2069583
で、√Dの連分数展開の周期がいつ奇数になるか?という問題を質問させていただきました。平方剰余の相互法則の第一補充則と簡単な議論から、Dは4で割り切れないこと、さらにDの素因数に4で割って3余る素数を含まないことが必要条件となります。連分数展開の周期が奇数になることと、ペル方程式
x^2-Dy^2=-1
が整数解を持つことは同値です。したがってこのためのDの必要条件が求められたことになります。しかし、上の条件が満たされるDでもペル方程式が整数解を持たないものがたくさんあります。たとえば34,146,178,194,205,221,…などなどです。他方、合成数であっても解をもつDもたくさんあります。いったいこれらの性質の違いがどこから来るのか知りたいものです。ですが、難しい問題なのかも知れません。
で、本題です。このDが特に素数pのとき、解を持たないような反例が600以下の4で割って1余る素数で見つからなかったので、これなら正しいのではないか?と思ったので、そのことを証明する方法、あるいは反例があるのであれば知りたいと思いました。
きちんと書くと、「pを4で割って1余る素数とするとき、x^2-py^2=-1は常に整数解を持つか?」ということです。4で割って1余る素数pはある互いに素な自然数s,tを用いてp=s^2+t^2と表されることが知られています。しかし、こう表されることがペル方程式が整数解を持つための十分条件になるかというとそうではありません。たとえば34=5^2+3^2は合成数で平方和分解を持つ数ですが、上記のペル方程式の整数解を持たないもので、58=7^2+3^2は合成数で平方和分解をやはり持ちますが、こちらはペル方程式が整数解を持ちます。ですから、もし僕の書いた主張が正しいのであれば、素数性が大事なのであって、平方和分解とは本質的に異なる問題だと思います。