- 締切済み
漸化式について
高校生のものです。 a(1)=1、a(n+1)=Σka(k)という漸化式があるとき、Σk/a(k+1)の値を求めよ。という問題がありました。 ただしΣの範囲はk=1からnまでです。 まずa(n)を求めるとn≧2のとき、a(n)=n!/2という数列が出てきます。 次にΣk/a(k+1)を求めるために、出したa(n)を代入すると、2Σk/(k+1)!と変形できますが、ここらからはどうすればよいのでしょうか?
- みんなの回答 (2)
- 専門家の回答
高校生のものです。 a(1)=1、a(n+1)=Σka(k)という漸化式があるとき、Σk/a(k+1)の値を求めよ。という問題がありました。 ただしΣの範囲はk=1からnまでです。 まずa(n)を求めるとn≧2のとき、a(n)=n!/2という数列が出てきます。 次にΣk/a(k+1)を求めるために、出したa(n)を代入すると、2Σk/(k+1)!と変形できますが、ここらからはどうすればよいのでしょうか?
お礼
回答ありがとうございました。 確かにできましたが、どういう発想で解法を考えましたか? やっぱり分数型のΣの計算は扱いにくいので、相殺するタイプにしようと考えたんですか?