斜面上での物体の分裂
問題文
水平面とθの角度をなす、なめらかな斜面上の高さhの点に置かれていた質量mの小物体が、運動を始めてからt秒後に斜面の最大傾斜と直角な方向に分裂した。分裂後の小物体Aの質量は2/5m、小物体Bの質量は3/5mである。分裂後も斜面と小物体の間はなめらかであり、A,B共に斜面を離れることはなかったとする。また重力加速度の大きさをgとする。
問
小物体が運動を始めてから、小物体Aが斜面の下端に達するまでの時間を表す式を求めよ。
解
小物体が分裂するとき、運動方向に力が働くので、斜面の最大傾斜に平行な方向の運動は変化しない。小物体に生じる斜面の最大傾斜に平行な加速度をaとして、斜面の最大傾斜に平行な方向について運動方程式を作ると.........と解いていくと答えは1/sinθ√2h/gとなります。
ここで疑問なんですが、これはつまり分裂前と分裂後で加速度が変わってないということですよね?つまりA,Bどちらも同時に斜面の下端に達する。ということだと思います。計算過程に質量は含まれていませんし。途中で斜面の最大傾斜方向に外力が何も加わってないのは理解できます。ただ加速度を求めるときは個々の物体それぞれについて運動方程式を立ててから求める、ということを学校できっちりと教えられたのでどうも解答でこうだけ説明されてもピンときません...
僕は結局「分裂前と分裂後で加速度を分けて考えるのか!」などとやっていたのですがやはり答えは出ませんでした。ちなみに回答は選択式になっていますが。
この考え方についてアドバイスよろしくお願いします!