高校数学 数学3の体積の問題です
原点を通る直線でx軸と角θで交わるものをl[θ]とする
ここで角θは0<θ<π/2をみたし、かつl[θ]円C[1],C[2]と交わらないような範囲を動くものとする
また円C[1],C[2]をl[θ]の回りに1回転して得られる立体の体積を、それぞれV1[θ],V2[θ]とする
(1)V1[θ],V2[θ]をθを用いて表せ
(2)V1[θ]+V2[θ]の最大値を求めよ
この問題一度出して解決にしたんですが、その後で又疑問点が出てきたので、よろしくお願いします
解説の円C[1]の中心(2,0)とl[θ]との距離は2sinθ
よってV1[θ]は円C[1];x^2+(y-2sinθ)^2=1をx軸のまわりに1回転した回転体の体積に等しいからとあるのですが
距離は2sinθまで分かるのですが、C[1]の上側をx軸の周りに回転させた体積をV1,C[1]の下側をx軸の周りに回転させた体積をV2とするとC[1]をx軸のまわりに回転させた体積がV1-V2になっているのが納得できなかったんですが こういう事ですか、まずlをx軸に移す、つまり角θ回転させると、
円C1もlと同じ角θだけ回転します この時円C1はl、つまりx軸より下側にあります 回転体の体積は平行移動させても
同じなので、円C1をy軸上に持っていき、さらにx軸に関して対称移動させてx軸より上側に持っていったわけですね、
これをx軸のまわりに回転させると確かにV1-V2になりますね、角θ回転した円C1がx軸より下側だと思っていたから疑問
に思っていたわけです、因みにx軸より下側で考えようとしたら円C1をx^2+(y+2sinθ)^2=1とすればうまくいきますね、考え方は合ってますか?