ジョルダン開曲線の存在の証明はこれで正しい?
確認させて戴きたいことが有ります。
n次元複素空間C^nに於いて,
a∈C^nに対して,B[a,1/k):={z∈C^n;|z-a|<1/k} (k∈N)を中心をaとする半径1/kの開n次元球体,
,B[a,1/k]:={z∈C^n;|z-a|≦1/k} (k∈N)を中心をaとする半径1/kの閉n次元球体と呼ぶ事にする。
B[a,1)\B[a,1/2]≠φなのでb_1∈B[a,1)\B[a,1/2]という適当な一点が取れる。
続いてb_2∈B[a,1/2)\B[a,1/3]という適当な一点が取れる。
この時,B[a,1)\B[a,1/3]は開領域なのでb_1を始点としb_2を終点とする連続曲線γ(b_1,b_2)が採れますよね。
同様に,B[a,1/2)\B[a,1/4]\γ(b_1,b_2)も開領域なのでb_2を始点としb_3を終点とする連続曲線γ(b_2,b_3)が採れますよね。
同様に,B[a,1/3)\B[a,1/5]\γ(b_1,b_2)\γ(b_2,b_3)も開領域なのでb_2を始点としb_3を終点とする連続曲線γ(b_3,b_4)が採れますよね。
:
これらの連続曲線を順に繋いでいって,
∪_{j=1..k}γ(b_j,b_{j+1})とするb_1を始点としb_{k+1}を終点とする連続曲線γ(b_1,b_{k+1})がえんえんと伸ばせますよね(∵選択公理)。
勿論,lim_{k→∞}b_k=aとなりますね。
そこで本題ですが,
{a}∪(∪_{j=1..∞}γ(b_j,b_{j+1}))はb_1を始点としaを終点とする連続曲線γ(b_1,a)が採れると思います。
その際,Γ:[0,1]→γ(b_1,a)はという媒介変数t∈[0,1]を用いたb_1を始点としaを終点とする連続曲線ですよね?
各γ(b_j,b_{j+1})は有限の長さなので(∵γは連続写像なのでコンパクト集合[0,1]の像もコンパクトになる)
Γ:[0,1]→{a}∪(∪_{j=1..∞}γ(b_j,b_{j+1}))
を
Γ:[0,1/2]→γ(b_1,b_2); Γ(0):=b_1, Γ(1/2):=b_2,
Γ:[1/2,1/3]→γ(b_2,b_3); Γ(1/2):=b_2, Γ(1/3):=b_3,
:
Γ:[1/j,1/(j+1)]→γ(b_j,b_{j+1}); Γ(1/j):=b_j, Γ(1/(j+1)):=b_{j+1}
:
と定義すれば宜しいかと思います。
特にγ(b_j,b_{j+1})の長さをlとすると,Γ:[1/j,1/(j+1)]→γ(b_j,b_{j+1})を
Γ(1/j)+(1/(j+1))/2):=lの中間点,
Γ(1/j)+(1/(j+1))/3):=lを3等分した始点から1/3の地点,
:
という風に定義するとΓは全単射になると思います。如何でしょうか?