締切済み シュレーディンガー方程式の覚え方 2006/07/01 09:24 シュレーディンガー方程式の楽しい(?)覚え方ってないでしょうか? "いい国作ろう頼朝さん"みたいな感じとか・・・ みんなの回答 (1) 専門家の回答 みんなの回答 tomoki356 ベストアンサー率25% (8/31) 2006/07/01 11:35 回答No.1 Hψ=Eψ コレ、覚えられませんか…? ^^;) 通報する ありがとう 0 広告を見て他の回答を表示する(0) カテゴリ 学問・教育自然科学物理学 関連するQ&A シュレーディンガー方程式 本を読んでも全くわからないんですけど、シュレーディンガー方程式とは何を求めるために、どのように使うんですか? シュレーディンガーの方程式について シュレーディンガーの方程式がありますが、出所を聞かれました。 これは暗記ものだと思ってたんでこの公式しか暗記してません。 なぜこの方程式がでてきたのかをどなたか化学に詳しい方教えてください↓↓↓出来れば詳しく教えてくださると助かります↓↓お願いします↓↓ シュレディンガー方程式について シュレディンガー方程式について 普通の物体が中心力を受けて運動する時、ある平面上を運動します。その平面以外ののところにその物体が存在する確立は0です。 また同じように中心力を受けて原子核の周りをまわる電子は球状に存在確率があります。 これはミクロな現象とマクロな現象の違いで、マクロな現象は近似でしかないということだと思うのですが、どう近似したらそうなるのかがわかりません。 マクロな物体でもシュレディンガー方程式は満たすはずです。そうなればマクロな物体も必ずしも同一平面上にいないくてよいのではないですか?なぜこういう矛盾が出るのですか? 物質を構成する個々の原子を考え、それぞれの存在の可能性の範囲を考えるときは、一個だけで運動する電子とは違って、他の原子からの力があるから球面的には広がらなさそうですが、では物体を一つのものとして、シュレディンガー方程式を解いてはいけないんですか?極座標表示のシュレディンガー方程式の角度成分(Θ、φ)には質量の変数は含まないですよね。だからシュレディンガー方程式をといても、電子と普通の物質両方とも同じ結果になるのではないですか?そうだとしたら、そっからどう近似したら現実の結果とあうのですか? シュレディンガー方程式 今日シュレディンガー方程式を習ったのですが、これを解くことによって、原子中の電子のどのような性質が理解されるようになったのですか?回答お願いします。 シュレディンガー方程式についての質問です 運動量空間の波動関数Φ(p,t)に対するシュレディンガー方程式を表せ この問題が分かりません… 座標空間でのシュレディンガー方程式からどのように変形させればよいのでしょうか… シュレディンガー方程式は、数学者が作ったのですか 量子力学のシュレディンガー方程式というのは、シュレディンガーさんが数学者に頼んで作ってもらったのですか? その数学者は、ヘルマン・ワイルさんですか? 詳しい事情を知らないので教えてください。 シュレディンガー方程式について。 シュレディンガー方程式を解くと、全エネルギーEと波動関数Φが求められるが、これは何を表すか。〝軌道〟〝確率密度〟を用いて説明せよ。 この問題についてですが、教科書を見たりして調べているのですが、〝軌道〟をどういうふうに使うかよくわからないです。 どのように説明すれば良いのでしょうか? シュレディンガーの方程式について 1/2mωx^2などのポテンシャルエネルギーをもつ保存系の場合に、定常状態のシュレディンガー方程式を解くことなしに固有値Eを求めることはできますか? 回答よろしくお願いします。 シュレディンガー方程式は、今、役に立っているのか 量子力学のシュレディンガー方程式が発見されてから90年くらいたちますが、 シュレディンガー方程式というのは、今でも役に立つのでしょうか? それとも、単に教育のために大学で教えられているだけで、今では役に立つものではないのでしょうか? シュレディンガー方程式の具体的な使い方 電子が原子核からどのくらいの距離にあるかを知りたいとき、シュレディンガー方程式を使って解けると書いてあったのですが、具体的にはどのようにすれば答えがわかるのですか? シュレディンガー方程式は、 ih∂Φ/∂t=HΦで Φ(x,t)=Ae^i(kx-wt)ですが、これをどのように使えば距離がわかるのですか?tやH(ハミルトニアン)に何か数値を代入して求めるのですか??わかる方がいたらどうか教えてください!! シュレディンガー方程式の意義について こんにちわ。 大学で、「シュレディンガー方程式の意義を説明せよ」という課題が出たのですが、全く専門ではなく、本などを見ても式がズラリと並べてあり、よく分かりません。 どなたか、ご回答をお願いします。 シュレディンガー方程式は暗記ですか? テストで点を取ることを目的にしているものです。 最近、「高校数学で分かるシュレディンガー方程式」という本を読みました。 物理学ですのでできるだけ暗記も少なくて、一般的な波動関数からシュレディンガー方程式を導けるようにはなりました。暗記は少なくてすむようにしたいのですが、本では水素原子の波動関数を求める箇所が省略されており、その練習をしていたところ、かなり前段階で(x,y,z)座標から(r,θ,φ)に変換する箇所が出てきます。教科書では一行サラッと書かれているだけで二回変微分の計算なのですが、まじめにやると恐ろしく煩雑な計算で必ずどこかで微分を間違えてしまいます。 そこで(できれば大学院レベルの受験経験者にお伺いしたいのですが)、シュレディンガー方程式の極座標表示は暗記するものなのでしょうか?どうかよろしくお願いします。(基本となる形式は暗記しました。) シュレディンガー方程式の教科書しりませんか? 大学の講義(無機化学)でシュレディンガー方程式が登場しました。講義を聞いてもよくわからなかったので、自力でやるしかありません。。どうかいい教科書とか参考書とかを知りませんか??? シュレディンガー方程式の解法と固有関数 電子以外のシュレディンガー方程式、例えば水素原子におけるシュレディンガー方程式の解法を教えて下さい。 それとは別に固有関数の求め方も分かる方教えて下さい。 シュレディンガー方程式の解の置き方について シュレディンガー方程式を解く際、Aexp(ikx),Aexp(kx),Asinx+Bcosxのような解を置くと思いますが、解の置き方の基準はなんなのでしょうか? シュレディンガー方程式について k/r (kは定数 r=(x^2+y^2+z^2)^1/2) のポテンシャルエネルギーをもつ保存系の場合に、定常状態のシュレディンガー方程式を具体的に書き下すと (-(h/2π)^2/2mΔ+k/r )Ψ=EΨ となるでしょうか? 回答よろしくお願いします。 水素のシュレディンガー方程式について 水素のシュレディンガー方程式を求めていく過程で、 d^2Φ/dΦ^2=-m^2Φ(Φ)の解は、 Φ(Φ)=Aexp(±imΦ)とすぐに出せるとあるのですが、 これは何か公式や法則があるからすぐ解が出せる、ということなのでしょうか? シュレディンガー方程式と不確定性原理とどちらが先か シュレディンガー方程式と不確定性原理とどちらが先か 量子力学の初歩の質問ですが、 量子力学では、シュレディンガー方程式と不確定性原理のどちらが先にあるのですか。 シュレディンガー方程式が解ける場合について。 量子力学の多体問題に関しての質問があります。 (⇩)下記のURLの『水素原子におけるシュレーディンガー方程式の解』のwikipediaのページには、 https://ja.wikipedia.org/wiki/%E6%B0%B4%E7%B4%A0%E5%8E%9F%E5%AD%90%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E3%82%B7%E3%83%A5%E3%83%AC%E3%83%BC%E3%83%87%E3%82%A3%E3%83%B3%E3%82%AC%E3%83%BC%E6%96%B9%E7%A8%8B%E5%BC%8F%E3%81%AE%E8%A7%A3 粒子の波動関数を決定する事を意味する。正の電荷をもつ粒子と負の電荷がそれぞれ陽子と電子だとすればこの系は水素原子に相当するが、一般の価数の原子核を持つ1電子系多価イオン(水素様原子)の系も同一の方程式から解を導ける。この方程式は様々な教科書で取り上げられている[1][2][3]。 と書かれています。 この事に関して(⇩)下記の2つの質問があります。 (1) シュレディンガー方程式は、全ての電子の合計数が1つの原子のみしか、解けないのでしょうか? (つまり、H、He1+、Li2+、Be3+、…… 等、全ての電子の合計数が1つの原子またはイオンの時のみしか、シュレディンガー方程式は解けないのでしょうか?) (2) 最外郭の電子が1の原子は、シュレディンガー方程式は解けないのでしょうか? (つまり、Li、Be1+、Na、K 等の最外郭の電子数が1つの原子やイオンのシュレディンガー方程式は解けないのでしょうか?) この上記の2つの質問の答えを教えてください。 シュレーディンガー方程式を解くと束縛状態とそうでない状態のときがありま シュレーディンガー方程式を解くと束縛状態とそうでない状態のときがありますが、これらは実際にシュレーディンガー方程式を解いてみないとわからないのですか?その判別方法がありましたら教えてください。 また束縛状態=離散固有値 非束縛状態=連続固有値 と考えていいんですよね? 注目のQ&A 「前置詞」が入った曲といえば? 新幹線で駅弁食べますか? ポテチを毎日3袋ずつ食べています。 優しいモラハラの見抜き方ってあるのか モテる女性の特徴は? 口蓋裂と結婚 らくになりたい 喪女の恋愛、結婚 炭酸水の使い道は キリスト教やユダヤ教は、人殺しは地獄行きですか? カテゴリ 学問・教育 自然科学 理科(小学校・中学校)化学物理学科学生物学地学天文学・宇宙科学環境学・生態学その他(自然科学) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど