- ベストアンサー
温度って何?
温度ってそもそも何なのでしょうか? 温度が高い物ほど分子運動が激しいということは、一応知っています。 けれど、温度が同じである時、一体何が"同じ"なのかよく分かりません。 分子一個あたりが持つエネルギー量が同じなのではないかという仮説を思いついたのですが、それだと単位量あたりの分子の数が多いほど比熱は大きいはずです。 ということは、比熱は分子量(分子一個あたりの重さ)に反比例するということになります。 金属の比熱を調べてみると、アルミニウム(原子量27)は0.880[J/g・K]、鉄(同56)は0.435、銅(同63.5)は0.379。 これは仮説が正しいのかなと思ったら、水(分子量18)の比熱は4.19。 氷では比熱が2.10ですが、どちらにせよ先程の仮説が通用しません。 というか、そもそもどうして水と氷で比熱が違うのか分かりません。 どなたか、この疑問に答えて頂けませんか?
- みんなの回答 (7)
- 専門家の回答
質問者が選んだベストアンサー
> 温度ってそもそも何なのでしょうか? シンプルな質問のようですが,次々突っ込んでいくと熱力学,統計力学の テキストができちゃいます.固体物理もずいぶん入りますかね. > 分子一個あたりが持つエネルギー量が同じなのではないかという仮説 なかなか本質をついています. どの分子も全く同じエネルギーを持つわけではありませんから 「平均エネルギー量」というべきですね. これが温度と密接な関係があります. 古典力学的には,運動の1自由度あたり (1/2)kT (k はボルツマン定数) の平均エネルギーがあることが知られています. 1モルあたりならアボガドロ数倍すればOKで, k とアボガドロ数の積が気体定数 R です. 気体では,分子が勝手に動き回っていますから, 3次元の3方向で1分子あたり平均 (3/2)kT のエネルギーがあります. 単原子分子はこれだけですが,2原子分子では分子回転の自由度があって, (5/2)kT になっています. では,固体では? 固体の素朴なイメージは,分子が格子状に並んでいるものです. もちろん,気体とは違って勝手に動き回れません. 勝手に動き回ると,固体状態を保てません. でも,全く動かないわけではなくて,平衡位置の周りに振動しています. 単純にばね振動みたいなものだと思うと,運動エネルギーの他に ポテンシャルエネルギーがありますので,3方向×2で,6自由度あります. したがって,平均エネルギーは 6×(1/2)kT = 3kT. エネルギーを温度で微分したものが比熱ですので, 比熱は温度によらずに 3k (1モルなら 3R). これが, Umada さんの書かれている Durong-Petit の法則です. 本当は独立したばねモデル(Einstein model)はちょっとまずくて, となりのばねのことなどを考えないといけないことがわかっていますが, 自由度の計算には関係ないので,十分高温ではやはり Durong-Petit の法則 がなりたちます. stargazer さんや Umada さんの書かれているように, Al,Fe,Cu でよく合っていますから,めでたしめでたしのように思えます. でも,ちょっと待てよ. 金属中には自由電子があって,ほとんど勝手に動き回っているんじゃ なかったっけ? それなら電子を気体みたいに考えて,もう (3/2)kT のエネルギーが あるんじゃないのか? この分足したら,比熱はもっと大きくなるんじゃないのか? 自由電子があるからこそ,金属は電気を伝えるんじゃなかったっけ? 自由電子は電気伝導には効くけど,比熱には効かないの? なぜ? これが,量子力学誕生以前の金属電子論の大問題でした. この疑問は量子力学で初めて説明されました. 液体は無茶苦茶難しくて,簡単な説明はないと思います. 液体の中でも,水はかなり特殊な性質を持っています. 大体,ぎゅっと固めれば固体になりそうだから, 固体の方が液体より密度が小さく,氷は水に沈みそうです. ところが誰でも知っているように,氷は水に浮きます. こんなへんてこりんな物質は他にほとんどありません. 氷が水に浮くのは日常よく目にするので不思議と思わないのですが, 実は極めて奇妙な現象なのです. > ところで、“∝”という記号の意味が分かりません 「比例する」という意味です. > 温度の高い物質と温度の低い物質をくっつけた時に、 > 温度の高い方から低い方に熱が移動するのはどういう仕組みなんでしょう? 固体で話をしますと,温度が高いところは分子振動が激しいわけです. だんだん分子振動が伝わっていって, 全体的に分子振動の程度が同じようになろうとします. これを温度と熱で見れば,温度が高いところから低いところに熱が流れた, と見えるのです.
その他の回答 (6)
- ryumu
- ベストアンサー率44% (65/145)
よく見ると私の意見は、kazu-kunさんと同じことになりますね。失礼しました^^; とりあえず、プロのsiegmundさんが回答されてるので、安心して間違えられれます?! >水の比熱が一番大きいのは水素結合のせいでしょうかね? その通りだと思います。 siegmundさんのおっしゃるように、水は極めて不思議な性質を示しますが、それは水素結合によるものとされています。 水や水素結合は、今でもよく研究されています。 また高圧下で作られた氷は、水にも沈むらしいです。 >温度の高い方から低い方に熱が移動するのはどういう仕組みなんでしょう? これは自然が、状態を均一にしようとする傾向のあらわれでしょう。 現象のイメージとしては、振動の小さい分子が、振動の大きい分子との衝突によりエネルギーが伝えられ、伝えられた方は振動が強くなり、伝えた方は振動が弱くなる・・・ということが連鎖することによるものでしょう。
お礼
回答ありがとうございます >水は極めて不思議な性質を示します 確かに水は不思議な物質だと思います 化学を勉強していても、水はたびたび“例外”としての扱いを受けています 一番身近な物質が、一番変わった性質を持っているなんて、なんだか奇妙な感じがしますが >>温度の高い方から低い方に熱が移動するのはどういう仕組みなんでしょう? >これは自然が、状態を均一にしようとする傾向のあらわれでしょう。 >現象のイメージとしては、振動の小さい分子が、振動の大きい分子との衝突によりエネルギーが伝えられ、伝えられた方は振動が強くなり、伝えた方は振動が弱くなる・・・ということが連鎖することによるものでしょう。 なるほど、 何となくそのイメージは分かりました 物理の実験で、大きなボールを小さなボールにぶつけるような感じですね
- brogie
- ベストアンサー率33% (131/392)
熱力学には第1、第2、第3法則があることはご存知ですね? しかし、温度の法則は何処にもありません。不思議です。 実は、忘れられていたようです。そこで第0法則とされてしまいました。 「AとBが熱平衡で、AとCも熱平衡であるとき BとCもまた熱平衡である。」 これが熱力学の第0法則です。 (熱平衡とは熱エネルギーの移動がない状態です) Newton力学第1法則(慣性系の存在)に相当する法則です。 力学では慣性系の存在を第1法則と定義しています。この第1法則があって、初めて、第2法則が存在するのです。 しかし、熱力学の第1法則は熱エネルギーを含めたエネルギー保存則から、始まっていますから、温度の存在を第0法則として、追加したものです。 以上、老婆心ながら、、、
補足
今更ながらの質問ですが、温度の高い物質と温度の低い物質をくっつけた時に、温度の高い方から低い方に熱が移動するのはどういう仕組みなんでしょう? 疑問の根本的な原因はここにあるような気がします
- ryumu
- ベストアンサー率44% (65/145)
基本的には、分子の運動・振動のエネルギーが熱と言っていいと思いますが、分子には他の近接分子との相互作用により、その束縛条件が単体の時と大きく異なるはずです。 したがって、分子一個あたりが持つエネルギーを計算しても、隣接分子との相互作用による寄与も含まれるため、単純な反比例式にならないのではないでしょうかね? つまり、温度が同じであることはエネルギー量としては同じだけど、運動・振動の仕方が、それぞれ分子の束縛のされ方では異なっている・・というのはどうでしょう??
お礼
回答ありがとうございます 金属の単体では、反比例の式が成り立つのに、分子からなる物質では成り立たないのはそのせいなのかと納得いたしました 思いつきですが、水の比熱が一番大きいのは水素結合のせいでしょうかね? ここらへんまで来ると、化学の分野にも入ってくるのでややこしいですが
- Umada
- ベストアンサー率83% (1169/1405)
ごめんなさい、最初の式間違えていました。 3RTでなく、比熱は3Rが正しいものです。
- Umada
- ベストアンサー率83% (1169/1405)
後半だけの回答ですみません。 固体の比熱はDurong-Petitの法則として知られており、材料が十分に高温なら1モルあたりの比熱は 3RT で材料によらず一定になります(Rは普遍気体定数)。試しに1モル当たりの比熱をAl, Fe, Cuで計算すると Al: 23.76[J/mol K] Fe: 24.36[J/mol K] Cu: 24.07[J/mol K] でほぼ一定の値になっていることが分かると思います。固体物理学の教科書をいくつか当たれば導出まで含めて出ています。 ただしこれは古典論で出したもので高温では当てはまりますが、量子統計を用いて厳密に計算すると低温ではこれから外れて比熱の値は小さくなる、という結果が出てきます。(どれくらいの温度から外れてくるかは物質によります。構成元素が軽く、かつ固い物質ではその温度は高くなります) 水と氷で比熱が違うのは「前者は液体で後者は固体であるから」というお答えになると思いますが、私は液体の比熱の理論に明るくないため、ここまでで端折らせてください。
お礼
回答ありがとうございます 比熱なんて小学生でも習うくらいだから簡単なんだろうと思って質問したのですが、意外に奥が深いようです…… お答えを見ますと、私の仮説もあながち間違いではないようですね 少し限定があるようですが
- kazu-kun
- ベストアンサー率31% (72/232)
まじめに考えるとハマりそうなので、適当に答えてます。(^^; 分子一個あたりが持つエネルギー∝絶対温度 で、あっているような気がしますが。 固体・液体のような凝集状態だと、結合エネルギーが無視できなくなってくるのではないでしょうかね?物質によって結合状態は様々ですから。 気体なら分子が持つエネルギーは殆どが運動エネルギーでしょうから、分子量に比例とかそういうカタチになってくると思います・・・。 適当に答えてますんで、「自信なし」です。
お礼
早速の回答ありがとうございます なるほど、分子が持つエネルギーの全てが運動エネルギーになるわけではないということですね 水は気体以外の物質では一番比熱が大きいそうですが、これはどうしてなんでしょう? ところで、“∝”という記号の意味が分かりません これの意味と読み方も教えて頂けませんか?
お礼
とても詳しくて分かりやすい回答ありがとうございます 自由度うんぬんのところは、正直よく理解できていないのですが、大体のイメージは分かりました 実は、同じような質問を高校の先生(大学院生)にしたことがあるのですが、その時は適当にはぐらかされました 学校教育の中で当然のように教えられていることでも、理屈を考えると実はすごく難しい、ということもあるのですね とにかく、これで積年の疑問が晴れました ありがとうございます