• 締切済み

非整数微分のある計算について

こんにちは、 Z= E^(ia*x + ib*y) のとき δzδz δz  δz ----------- = -------------- δx^2  δy^2   δy^2  δx^2   = -a^2*b^2 E^(ia*x + ib*y) のように、微分する順番を変えても計算結果は同じです。 また、1次のときも δzδz δz  δz ----------- = --------------- δx δy       δy δx =-a*b E^(ia*x + ib*y) のように、微分する順番を変えても計算結果は同じです。 ここで下記のように 非整数微分の場合 δz  δz        δz  δz ----------------    =  -------------------- δx^(1/2) δy^(1/2)   δy^(1/2)δx^(1/2) 多分、微分する順番を変えると計算結果が異なると 思うのですが、 質問 (1)微分する係数が、上記の式のように1以下で、   指数関数 E^(ia*x + ib*y)のような値を   順番を変えて微分しても計算結果が同じに   なるような非整数微分はあるのでしょうか? (2)逆に、非整数微分で、順番を変えても 計算結果が同じになるような指数関数 Zはないでしょうか? 追伸 なぜか、数式のδzδzの部分が、ずれて、ちゃんと表現できません。 なんとか、文意から意味をご理解願います。

みんなの回答

  • siegmund
  • ベストアンサー率64% (701/1090)
回答No.1

http://oshiete1.goo.ne.jp/kotaeru.php3?q=838209 が参考になるかと思います.

oshiete-na
質問者

補足

ご回答ありがとうございます。 参考になりました、しかし、質問(1)(2)の答えは見つからないです。ご教示頂きましたら幸いです。