連続関数
関数の連続性を証明するところがわからないので質問します。
xが無理数ならば、f(x)=0とし、xが有理数で既約分数p/q(ただしq>0)のかたちに書けるときは、f(x)=1/qとする。
このように定義された関数fは無理数xで連続、有理数xで非連続である。その証明はやさしい。
xが無理数とし、εを任意の正数とする。1/q≧εすなわちq≦1/εとなる正整数qは有限個しかないから、δ>0を十分に小さく選ぶと開区間(x-δ,x+δ)には、上の条件を満たすqにたいする既約分数p/qは存在しない。したがって任意のy∈(x-δ,x+δ)に対して
|f(y)-f(x)|=1/q<εとなる。fはxで連続である。一方、有理点のどんな近傍にも無理点が存在し、そこでfの値は0だから有理点では連続ではない。
自分は具体的な数としてx=√2、ε=0.4とすると、q≦2.5となり、q=1,2。 p/q=1/1,2/1,1/2,3/2などいろいろあげられますが、δ=0.01とすると(√2-0.01,√2+0.01)=(1.404・・・,1.424・・・)にはp/qはふくまれません。
ここからがわからないところなのですが、x±δは無理数に有理数を足したり引いたりした無理数であることがあるので、yが無理数になり、f(y)=0となり|f(y)-f(x)|=1/q<εが成立しないような場合があると思います。自分は本があっているなら、f(x)=0より、
f(y)=1/qになると予想しました。どなたか任意のy∈(x-δ,x+δ)に対して|f(y)-f(x)|=1/q<εとなる。を説明してください。お願いします。
お礼
できました! IFとSUMのネストでしたか。 なんでできたか、自分でもよく理解できてないですが・・ ありがとうございます! 助かります。