• 締切済み

高校~大学数学について

大学での数学の授業ではあるのですが 内容的には高校レベルかと思います(そう、自分では思っていたのですが、塾の先生曰く大学レベルだそうで) 質問は以下の内容を全く無知の状態から決められた時間内に理解することは可能かということです。 通信制のため、スクーリングでの授業で 90分×5時限×3日間です。 成績は、授業中の中での演習問題と科目修得試験で決まります。 論理数学に関しては 1.集合:集合の定義と記法、集合の演算、集合の演算の性質 2.〃  :直積、演習 3.写像:写像の定義、単射と全射、逆写像 4.〃 :写像の合成、演習 5.関係:関係の定義、関係の表現、合成と逆関係、関係の和と共通部分 6.〃 :関係の性質、同値関係と同値類、順序関係 7.〃 :演習 他に命題論理に4時限(内1時限演習) 述語論理に3時限(内1時限演習) 他1時限は総括です。 また、高校数学Aの集合と論理を未習の場合は、教科書の例題に目を通す程度はしておいてくださいとの事です。 塾で集合の最初のほうだけは習ったので、例題に目を通す程度の同じぐらいの事にはなっているかと思いますが それ以外写像や関係、命題・述語論理は習った事がありません。 この状態で15時限の授業を受けてもちんぷんかんぷんでしょうか? 授業で使うテキストは既に手元にありますがそれを見ると、 塾で習ったように一から集合はこういうことであるとか、 こういうふうに書き表すとか、そういうところから書かれてあります。 他の単元も定義から書かれています。 もし、関係って?命題論理って?の状態で受けても単位取得できるぐらいなのであれば 塾の勉強を他科目にあてようかと思っているもので… テキストまでアップすることができないため、 限られた情報の中でですが、どう思われるでしょうか? 基礎数学は 三角関数2時限(一般角と狐度法・三角関数・逆三角関数/演習) 複素数3時限(複素数と複素数平面/ドモアブルの定理・オイラーの公式/演習) 他に指数関数・対数関数3時限、ベクトル3時限、数列と関数の極限3時限です。 また、 高校数学Iの2次関数、三角比を既習であることを前提とした授業です。 数学IIの指数関数、対数関数、三角関数、数学Bのベクトル、数列 数学IIIの極限を未習の場合は、例題に目を通す程度はしておいてください(必須ではありません) とあります。 未だに保管してある高校時代の教科書を見たところ、1年の2学期初めから不登校になったので 2次関数と三角比は未習でした。 たぶん1学期は1章やっただけで終わったと思います(私の持っている教科書では2次関数は3章、三角比は4章です) 基礎数学に関しても、2次関数と三角比が既習であれば、 ベクトルや三角関数の知識が無くても理解可能でしょうか? 2次関数と三角比が既習であることを前提とした授業という文面を今の今まで見過ごしていたのですが その部分は私は未習ですが、指数関数・対数関数、またベクトルの基礎の部分は理解可能でした。 (少し塾で習ったので) 2次関数と三角比はどの部分に関わってくるのでしょうか? (三角比は三角関数かとは思うのですが、2次関数はどこでしょうか?) 後、2次関数は中学でも少し習いましたが、中学の2次関数で習わず、数学Iの2次関数で習う部分はどこでしょうか?(中学は普通の公立中学です)

みんなの回答

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.2

なせばなる

回答No.1

質問内容をもう少し短くまとめましょう。それができないようでは論理的な理解に たどり着くのに時間がかかります。また、数1aなんて中学数学を完全マスターすれば センター試験レベルならば半分ぐらいの点数はとれるでしょう。 高校数学以前に、中学数学を完全に理解するようにしましょう。それができなければ 小学校の算数からやり直しましょう。いずれも基本が重要という事です。

ramu9999
質問者

お礼

回答ありがとうございます。 この手の質問は簡潔にまとめると、 回答のしようがないという回答がきてしまうもので… 中学数学を完全マスターすればセンター試験レベルの半分くらいは取れるというのは分かります。 数学は積み重ねですし、基本が重要という事も分かるのですが これまでの経験や、ここでの質問の回答等で 積み重ねとはいえ、直結はしていないと思います。 中学数学がほぼできてないのに高校数学は無理かとは思いますが 私が聞きたいのは質問に書いた内容ですので。