- ベストアンサー
次の問題を教えてください
平面上の正方形の対象の群をGとする。その中心をO、Gの単位元はeとし、Oを中心とする回転角σを90゜回転,180度回転をσ^2、270度回転をσ^3、τを正方形の一つの線対称の鏡映、τ2を正方形のもう一つの線対称の鏡映、辺の中心から引いて出来た線の鏡映をτ3,τ4とすると (1)τ1=τとおくと、στ=τ4,σ^2τ=τ2,σ^3τ=τ3となりGは次の8個の元からなることを証明せよ e,σ,σ^2,σ^3,τ,στ,σ^2τ,σ^3τ (2)τσ=σ^(-1)τとなることを証明せよ 以上の問題がわからないのでどなたかおしえてください お願いします
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
ただの計算問題なので、すぐに示せると思います。 これは群論では基礎中の基礎の計算なので、自分でチャレンジしてみてください。 頑張ってください。