- ベストアンサー
折り返しの問題(途中から分からない)
問題を解いていたのですが(2)が難しすぎて分かりません。 問題は、 ----------------------------------------------------------- 5以上の自然数nに対して、1からnまでのn個の自然数を1列に並べて、 順列 a1,a2,a3,・・・,an を作る。ai(2≦i≦n-1)が a(i-1)<ai>a(i+1) または a(i-1)>ai<a(i+1) ※a(i+1)は"+1"が"i"に対してかかるという意味です を満たす時、aiは「折り返しにある」というものとする。 ただし、a1,anは折り返しに無いものとする。 (1)折り返しにある数がnのみの1個であるような順列a1,a2,・・・,anは何通りあるか。 (2)折り返しにある数がnと他に1個の合計2個であるような順列a1,a2,・・・,anは何通りあるか。 ----------------------------------------------------------- これで(1)は以下の様に記述しました。 (1) nは両端を除いてn-2の中から1箇所に位置するので (n-2)C(1) (Cは選択する場合の数を調べる記号) nより左はi-1個並べられ、選んだ数は右から大きい順に1通りに並べるので、 (n-1)C(i-1) nより右は上の余りで、選んだ数は左から大きい順に1通りに並べるので、 1 よってiを含めた通りの数は (n-2)C(1)*(n-1)C(i-1)*1 =(n-1)C(i-1)*(n-2) i は2からn-1まで変化するので、(n-1)C(i-1)からiをはずすと、 Σ[i=2→n-1](n-1)C(i-1) =(n-1)C(1)+(n-1)C(2)+(n-1)C(3)+・・・・+(n-1)C(n-2) ここで、2項定理の 2^(n-1)=(1+1)^(n-1)=Σ[k=0→n-1](n-1)C(k) を利用して、 Σ[i=2→n-1](n-1)C(i-1) =2^(n-1)-(n-1)C(0)-(n-1)C(n-1) =2^(n-1)-2 よって求める値は (n-1){2^(n-1)-2} (答え) (2) nは両端を除いてn-2の中から1箇所に位置するので、 (n-2)C(1)=(n-2) これ以降の2つの折り返しの求め方が解けません。 どのように場合分けをするのか、分かる方宜しくお願いします。
お礼
今計算終わりました。 >2^(n-k-1)-1通り これはk+1以降から右肩上がりの時の通りを加えているわけですね。 計算は =(1/2)Σ[k=2~n-2](n-1)C(k)・{2^(k)-2} =(1/2){(2+1)^(n-1)-1-2(n-1)-2^(n-1)}-{(1+1)^(n-1)-2-(n-1)} この関係が分かりません・・・。
補足
回答ありがとうございます。 今計算しているのですが、 >ただし、nの右隣がn-k個の最小数となってもいいので、 >2^(n-k-1)-1通り。 これは 2^(n-k-1)-2通り ですよね?