- 締切済み
偏微分の問題
物理学基礎論で、偏微分を習いましたがよく分かりません>< 今朝、数学のジャンルで質問させていただきましたが、質問の意味が分からないと言われたので、問題ごとこちらに質問させていただきます。 1、次の偏微分を求めよ。ただし位置ベクトルrの独立変数はデカルト座標(x,y,z)である。 ∂r/∂x これに対し私の答えは・・・ Δr/Δx=lim {r(x+Δx,y,z)-r(x,y,z)}/ Δx と、これでよいのでしょうか??(極限はΔx→0です) 2、次の偏微分を求めよ。ただし( )-( )ではデカルト座標xyzを極座標rθΦの関数とし、( )-( )では極座標rθΦをデカルト座標xyzの関数として微分を行うこと。 ( )Δx/Δθ=rcosθ×cosΦ ( )Δy/ΔΦ=rsinθ×cosΦ ( )Δz/Δr=cosθ これでよいでしょうか・・・?? ( )Δr/Δy=y/√(x^2+y^2+z^2)=y/r ( )Δθ/Δz ( )ΔΦ/Δx ( )( )がまったく分かりません^^;たとえば、( )ではtanθを微分したらよいのでしょうか?? どなたかよろしくお願いいたします。
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- m_ik_e
- ベストアンサー率53% (23/43)
回答No.1
1 数学では間違いじゃないと思いますが、物理学ではr=√(x+y+z)に置き換えて計算することが多いです。 その場合は (1/2)*(x+y+z)^(-1/2) ですかね? 問題文に記述が無くても、物理屋ならこの答えを要求すると思いますが…出題者次第ですね 2 () って何ですか? 詳しくお願いします
補足
すみません。()はその中に番号をiとかiiで示していたのですが、ここでは表示されないことに気づきませんでした。 2、次の偏微分を求めよ。ただし(1)-(3)ではデカルト座標xyzを極座標rθΦの関数とし、(4)-(6)では極座標rθΦをデカルト座標xyzの関数として微分を行うこと。 (1)Δx/Δθ=rcosθ×cosΦ (2)Δy/ΔΦ=rsinθ×cosΦ (3)Δz/Δr=cosθ これでよいでしょうか・・・?? (4)Δr/Δy=y/√(x^2+y^2+z^2)=y/r (5)Δθ/Δz (6)ΔΦ/Δx (5)(6)がまったく分かりません^^;たとえば、(5)ではtanθを微分したらよいのでしょうか?? です。よろしくお願いいたします。