アンペールの法則の証明が理解できません・・・。
アンペールの法則∮[c]B_tds=∮[c]B(↑)・ds(↑)=μIの証明について
参考書に書いてあることを写していますので長いですが是非ともこのことを理解したいのでどうかよろしくお願いします・・・。
向きのある閉曲線C'に沿って流れる電流Iを考えて、この電流の作る磁場Bの点Pを通る向きのある閉曲線Cに沿っての接線方向成分B_tの線積分∮[c]B_tdsを計算する。この計算を行う前に点PからΔs(↑)離れた点でのB(↑)と、点Pは固定しておいて電流の方を反対に-Δs動かしたときの点PでのB(↑)は同じであることに注意しておく。
点Pから見た閉曲線C'を縁とする面の立体角をΩとする。なお、閉曲面C'を縁とする面は裏と表のある面でなければならない。向きのある閉曲線C'を縁とする裏と表のある面の裏から表のほうを向いた法線は、C'の向きに右ネジを回すときにねじの進む向きを向いているものとする。立体角には符号があって、面の法線が点Pの側を向いているときは正符号とする。
点Pから閉曲線Cに沿ってΔs(↑)離れた点P'から見た閉曲線C'の立体角をΩ'=Ω+ΔΩとする。立体角Ω'は、閉曲線C'を-Δs(↑)だけ平行移動した閉曲線C''を縁とする面を点Pから見た立体角に等しい。したがって、ΔΩは点Pから-Δs(↑)とΔs'(↑)を2辺とする微小平行四辺形を見た立体角の和である。(図左)
微小平行四辺形の中心を始点とし、点Pを終点とするベクトルをr(↑),r(↑)と微小平行四辺形の法線-Δs(↑)×Δs'(↑)のなす角をθとすると(図右),微小平行四辺形のr(↑)方向への射影面積はΔA=(-Δs(↑)×Δs'(↑))・r(↑)/r
ΔA/r^2=(-Δs(↑)×Δs'(↑))・r(↑)/r^3・・・(1)となる。そこで,C'に沿っての微小平行四辺形についての和をとると、閉曲線C'を-Δs(↑)だけ動かしたときの、点Pから閉曲線を見る立体角の変化ΔΩは
ΔΩ=-∮[c'](Δs(↑)×ds'(↑))・r(↑)/r^3=-Δs(↑)・∮[c']ds(↑)×r(↑)/r^3・・・(2)
ビオ=サバールの法則と比較をして、∮[c]B(↑)・ds(↑)=-μI∮[c]dQ/4πとなる。
ところで右辺の一周積分はゼロではないかと思われるかも知れないが、積分路Cが閉曲線C'と分離しており、電流Iが積分路Cを貫いていない場合には立体角の変化の総和はゼロであり、右辺の積分はゼロであるが、閉曲線C'が積分路Cを貫いている場合には-4πとなる。(立体角は1価関数ではないからである)・・・(3)
このように説明が続いていきますが、一つ目の疑問として、なぜ立体角の変化が(2)のように表せるのかということです。
そもそも(1)がよくわかりません、確かに図の円筒の側面積をr方向に射影したら(1)の式が導かれるのはわかりますが、この側面積に意味があるんですか?
この側面積を足し合わせたものが立体角の変化量を表すΔΩというイメージが全くつかめません。
図左のほうのC'の底面積を、単位法線ベクトルを用いてr方向に射影してやったものが立体角ですよね?なんで変化量では側面積・・・?
なぜ側面積をr方向に射影したものが立体角を表すようになってくるんですか
そして最後の(3)の立体角に関する説明の意味が全く理解できません、全球の場合に4π(sr)となるのは知っていますが・・・。
なぜ0にはならないんでしょうか・・・?
また0になる場合についても言及されていますが、その意味もよくわかりません・
お礼
参考URL拝見しました。なるほど、最近は進歩したものがあるんですね、これなら早く運転しやすく走れそうです。小さなバイクにでも取り付けられそうですね。でも私が映画で見たのはもっと簡素なものでした。