• ベストアンサー

三角関数の単位円の問題が分かりません

風邪で学校を休んでいたら全く分からなくなってしまいました。 図や回答を見ても意味分かりません。 Θが次の値のとき、sinΘ,cosΘ,tanΘの値を求めよ。 Θ=4/3πという問題です。 sinΘ=(点Pのy座標) cosΘ=(点Pのx座標) tanΘ=(点Tのy座標)で答えが sinΘ=-√3/2,cosΘ=-1/2,tanΘ=√3なのは理解できるのですが そもそもT(1,√3)というのはどこから出てくるんでしょうか? どうしてPが(-2/1,-√3/2)になるんですか?

質問者が選んだベストアンサー

  • ベストアンサー
  • asuncion
  • ベストアンサー率33% (2127/6289)
回答No.1

点P, Tという2つの点が登場するのがよくわかりませんが…。 添付した図のとおり、第3象限に、例の「1 : 2 : √3」の 直角三角形を書いて、斜辺を単位円の半径である1にします。 このとき、 sinθ = -√3/2 cosθ = -1/2 tanθ = √3

nao090401
質問者

お礼

ありがとうございました。 なんとか乗り切ることができました!

その他の回答 (1)

  • mmmommo
  • ベストアンサー率23% (9/38)
回答No.2

No.1の方の図でPは分かると思います。 Tは良く分かりませんが、tan(4π/3)は図の線分の傾きです。 Tの存在意義が全く分かりません・・・