• ベストアンサー

min記号の意味

min{a.b}の意味がよくわかりません。 たとえば、min{|x|/2,|x-1|/2}は、どちらがちいさいのでしょうか。誠に申し訳ありませんが、どなたか具体的に教えていただけないでしょうか。

質問者が選んだベストアンサー

  • ベストアンサー
  • hinebot
  • ベストアンサー率37% (1123/2963)
回答No.2

>min{a.b}の意味がよくわかりません。 「a,b のうち小さい方」ということじゃないですかね。 min{|x|/2,|x-1|/2}は、xが未知数なので、xの値によって |x|/2 の場合もあるし、|x-1|/2 の場合もあります。 #1さんが場合分けを説明してくれていますが、等号が抜けてますね。 つまり、x=0,1,1/2の場合の検証が必要ですね。 x=0のとき |x|/2 = 0/2 =0, |x-1|/2=|0-1|/2 = 1/2 なので、min{|x|/2,|x-1|/2} = |x|/2 x=1のとき |x|/2 = 1/2 , |x-1|/2=|1-1|/2 = 0 なので、min{|x|/2,|x-1|/2} = |x-1|/2 x=1/2のとき |x|/2 = |1/2|*(1/2) =1/4 |x-1|/2=|1/2-1|/2 = |1/2|*(1/2) =1/4 なので、min{|x|/2,|x-1|/2} = |x|/2 = |x-1|/2 #1さんの回答とまとめると x≧1/2 のとき min{|x|/2,|x-1|/2} =|x-1|/2 x<1/2 のとき min{|x|/2,|x-1|/2} =|x|/2 となりますね。 (一応x≧1/2としましたが、等号はどっちにつけてもOKです。) 【別のやり方】 2乗して比べます。 つまり、 (|x|/2)^2 -(|x-1|/2)^2 を計算します。2乗すると絶対値を外すことができます。 (|x|/2)^2 -(|x-1|/2)^2 =|x|^2/4 - |x-1|^2/4 ={x^2-(x-1)^2}/4 =(x^2-x^2+2x-1)/4 = (2x-1)/4 よって 2x-1≧0 すなわち、x≧1/2 のとき (|x|/2)^2 -(|x-1|/2)^2 ≧0 となり、|x|/2 ≧ |x-1|/2 また、2x-1<0 すなわち、x<1/2 のとき (|x|/2)^2 -(|x-1|/2)^2 <0 となり、|x|/2 < |x-1|/2 と分かります。

koukou
質問者

お礼

どうも、ありがとうございました。

その他の回答 (2)

  • Rossana
  • ベストアンサー率33% (131/394)
回答No.3

min{a.b}はaとbのうち小さいものを意味します. 例えば,min{7,2}=2です. 逆に, max{3,8}=8 となるmaxというのもあります.

noname#6715
noname#6715
回答No.1

>min{a.b}の意味がよくわかりません。 >(中略) >どちらがちいさいのでしょうか。 わかっているじゃん(=△=) 「aかbかどちらか小さい方」だ |x/2|と|x-1|/2の大小関係に関しては (これが知りたいのが本題のように見えるんだが) 場合わけが必要 x>1のとき x/2-(x-1)/2=1/2 よって|x/2|>|x-1|/2 0<x<1のとき x/2-{-(x-1)}/2=x-1/2 よって 1/2<x<1のとき |x/2|>|x-1|/2 0<x<1/2のとき |x/2|<|x-1|/2 x<0のとき -x/2-{-(x-1)}/2=-1/2 よって|x/2|<|x-1|/2 以上から x<1/2のとき|x/2|<|x-1|/2 x>1/2のとき|x/2|>|x-1|/2 なんか計算間違えた気がする

koukou
質問者

お礼

どうも、ありがとうございました。