3点円弧の中心座標の求め方
いつも、お世話になります。
チョット、ジャンルは違うんですが、どこに聞けばよいか分からなくて、
3点を、通る円弧の中心座標と、半径の求め方
点X、Y,Zを通る円弧の中心点をC、半径をrとするとき
(Xx-Cx)^2 + (Xy-Cy)^2 = r^2
(Yx-Cx)^2 + (Yy-Cy)^2 = r^2
(Zx-Cx)^2 + (Zy-Cy)^2 = r^2
^2は2乗
のような関係式が成り立ちそうなんですが
ここから
Cx=
Cy=
の式に要約できずに悩んでおります。
どなたか、上記に限らず、3点円弧の中心座標の求め方をご教授ください。
CADで書けば、すぐわかるんですが、そうじゃなくて計算で求める方法
みなさま、ご回答いただきありがとうございました。
結果報告させていただきます。
質問には書いていませんでしたが、コンピュータでの計算を前提としておりましたので
数学的な解にはなりませんでした。
2番、4番のご回答を参考にさせていただきました。
3点を(a,b)(c,d)(e,f)、(a,b)(c,d)を直線1、(c,d)(e,f)を直線2
各中点を(p1x,p1y)(p2x,p2y)として
直線1に直行する直線3の傾き f1=(c-a)/(b-d)
直線2に直行する直線4の傾き f2=(e-c)/(d-f)
中点1は p1x=(a+c)/2 p1y=(b+d)/2
中点2は p2x=(c+e)/2 p2y=(d+f)/2
直線3をy=f1x+A1で表した時の
A1=p1y-f1p1x
直線4は
A2=p2y-f2p2x
交点は
y=f1x+A1
y=f2x+A2
なので
f1x-f2x+A1-A2=0
x=(A2-A1)/(f1-f2)
それぞれを、変数として計算すると解決できました。
ご指導ありがとうございました。
お礼
コメント有難うございます。 出来ました!とても参考になります! なかなかこう解決方法が本などに記載されていないので、困っていましたが。。 ただ、イラストレータの円は半径が同じではないことに気がつきました。円の中心から角度によって寸法に若干の誤差があるんですね。