• 締切済み

ゼノンのパラドックスから導き出されること

ゼノンのパラドックスには、分割と亀と矢と競技場の4つがあり、それぞれ背理法を使って「空間を無限に分割することは出来ない」等ということを言っているようなのですが、それぞれがどういう仮定のもとで議論が進められて、結果何を否定しているのか、そして最終的に4つの結果を総合したらどういうことが言えるのか、がイマイチわかりません。 いろんなサイトを参照しようとしても、内容を紹介しているだけのサイトが多く、そのような所だと「よって馬車の運動は不可能である」といったような部分で終わっていて、結局どうすれば馬車の運動が可能なのかまでは書いていなかったりするのです。実際馬車は運動可能な筈なので、何らかの仮定(例えば「時間に最小単位がない」)が間違っていたという結果に行き着く筈なのですが… なので、それぞれのパラドックスがどんな仮定を否定しているのかが詳細に解るように回答お願いします。

みんなの回答

  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.1

その質問の仕方では、いろんなサイトで書かれている以上の回答を得ることは難しいでしょう。 人の説明を聞いてるだけでは理解は進まないので、あなたが今考察できたことを補足にどうぞ。 あなたはどんな「仮定」があると考えたのですか? そして背理法によって何が否定され、どの仮定が残されたと考えたのですか?

un986un
質問者

補足

分割のパラドックスでは、空間を無限に分割可能だとすると仮定すると、それ以上進めなくなってしまうので(無限に中点を取ることが可能なので)、現実の事象に反する為、空間は無限分割不可能である。 →空間に最小単位がある 亀のパラドックスも分割のパラドックス同様、空間を無限分割していると亀に追いつく事が出来ないので、空間は無限分割不可能。 →空間に最小単位がある。 矢のパラドックスについては、時間を無限分割可能(最小単位が存在しない)で、空間を無限分割不可能だとすると、ごく小さい時間後だと、空間の最小単位を超えるだけの時間がないことがありえるため、同じ状態が続く事がありえるので、矢が進まないという状況が生み出されてしまう。よって時間は無限分割できない、もしくは空間は無限分割可能、もしくは時間は無限分割不可で空間は無限分割可能。 →1、空間に最小単位がなく、時間に最小単位がある →2、空間に最小単位がなく、時間に最小単位がない →3、空間に最小単位があり、時間に最小単位がある 競技場のパラドックスでは、時間と空間(物体)に最小単位があるとすると、最初と最小単位時間後の中間の状態が存在するはずなので、矛盾してしまうため、時間、もしくは空間、もしくは両者に最小単位がないと出来る。 →4、空間に最小単位がなく、時間に最小単位がない →5、空間に最小単位がなく、時間に最小単位がある →6、空間に最小単位があり、時間に最小単位がない 以上の結果から、空間に最小単位があるとし、3と6を選ぶと、矛盾する結果となり一応運動は存在しないと言えそうですが、矢のパラドックスについてはこの内容も自分自身で納得できず、この設定だと何個か瞬間を繋ぎ合わせると矢が1単位分動いてしまいそうです… また、分割と亀の話が同じ事を二度言っている状態になってしまっています… 何かおかしい点があれば指摘お願いします。